急需初二上学期数学题(最好带答案)
4个回答
展开全部
一、选择题
1.下列计算中,运算正确的有几个( )
(1) a5+a5=a10 (2) (a+b)3=a3+b3 (3) (-a+b)(-a-b)=a2-b2 (4) (a-b)3= -(b-a)3
A、0个 B、1个 C、2个 D、3个
2.计算的结果是( )
A、—2 B、2 C、4 D、—4
3.若,则的值为 ( )
A. B.5 C. D.2
4.已知(a+b)2=m,(a—b)2=n,则ab等于( )
A、 B、 C、 D、
5.若x2+mx+1是完全平方式,则m=( )。
A2 B-2 C±2 D±4
6.如图,在长为a的正方形中挖掉一个边长为b的小正方形(a>b)把余下的部分剪拼成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )
A.a2-b2=(a+b)(a-b) B.(a+b)2=a2+2ab+b2 C.(a-b)2=a2-2ab+b2 D.(a+2b)(a-b)=a2+ab-2b2
7.如图,一块四边形绿化园地,四角都做有半径为R的圆形喷水池,则这四个喷水池占去的绿化园地的面积为( )
A、 B、 C、 D、不能确定
8.已知:有理数满足,则的值为( )
A.±1 B.1 C. ±2 D.2
9.如果一个单项式与的积为,则这个单项式为( )
A. B. C. D.
10.的值是 ( )
A. B. C. D.
11.规定一种运算:a*b=ab+a+b,则a*(-b)+ a*b计算结果为 ( )
A. 0 B. 2a C. 2b D.2a b
12.已知,,则与的值分别是 ( )
A. 4,1 B. 2, C.5,1 D. 10,
二、填空题
1.若,则 , ]
2.已知a- =3,则a2+2 的值等于 ·
3.如果x2-kx+9y2是一个完全平方式,则常数k=________________;
4.若,则a2-b2= ;(-2a2b3)3(3ab+2a2)
5.已知2m=x,43m=y,用含有字母x 的代数式表示y,则y=________________;
三、解答题
1.因式分解:
① ② ③
2.计算:① ②
③ ④(a+2b-3c)(a-2b+3c)
3.化简与求值:(a+b)(a-b)+(a+b)2-a(2a+b),其中a=,b=-1。
4.已知x(x-1)-(x2-y)=-2.求的值.
5.观察下列各式:
……
观察等式左边各项幂的底数与右边幂的底数的关系,猜一猜可以得出什么规律,并把这规律用等式写出来: .
6.阅读下列材料:
让我们来规定一种运算: =,
例如: =,再如: =4x-2
按照这种运算的规定:请解答下列各个问题:
① = (只填最后结果)
②当x= 时, =0
③求x,y的值,使 = = —7(写出解题过程)
7.如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如下图所示,则打包带的长至少要____________(单位:mm)。(用含x、y、z的代数式表示)
8.下图中,图⑴是一个扇形AOB,将其作如下划分:
第一次划分:如图⑵所示,以OA的一半OA1为半径画弧,再作∠AOB的平分线,得到扇形的总数为6个,分别为:扇形AOB,扇形AOC、扇形COB、扇形A1OB、扇形A1OC1、扇形C1OB1;
划分:如图⑶所示,扇形C1OB1中,按上述划分方式继续划分,可以得到扇形的总数为11个;第三次戈分:如图(4)所示;…依次划分下去.
(1)根据题意,完成右表:
(2)根据上表,请你判断按上述划分方式,能否得到扇形的总数为2007个?为什么?
参考答案:
一、选择题
1.C;2.C;3.C;4.C;5.C;6.A;7.C;8.B;9.B;10.C;11.B;12.C。
二、填空题1.5,1;2.11;3.6;4.3,1024;5.x6
三、解答题
1.略;2.略;3.-1;4.2;5.(3n+3)2;6.3.5,,x=8,y=2;7.2(x+y+z);8.填表略,不能,因为2007不是5的整数倍
1.下列计算中,运算正确的有几个( )
(1) a5+a5=a10 (2) (a+b)3=a3+b3 (3) (-a+b)(-a-b)=a2-b2 (4) (a-b)3= -(b-a)3
A、0个 B、1个 C、2个 D、3个
2.计算的结果是( )
A、—2 B、2 C、4 D、—4
3.若,则的值为 ( )
A. B.5 C. D.2
4.已知(a+b)2=m,(a—b)2=n,则ab等于( )
A、 B、 C、 D、
5.若x2+mx+1是完全平方式,则m=( )。
A2 B-2 C±2 D±4
6.如图,在长为a的正方形中挖掉一个边长为b的小正方形(a>b)把余下的部分剪拼成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )
A.a2-b2=(a+b)(a-b) B.(a+b)2=a2+2ab+b2 C.(a-b)2=a2-2ab+b2 D.(a+2b)(a-b)=a2+ab-2b2
7.如图,一块四边形绿化园地,四角都做有半径为R的圆形喷水池,则这四个喷水池占去的绿化园地的面积为( )
A、 B、 C、 D、不能确定
8.已知:有理数满足,则的值为( )
A.±1 B.1 C. ±2 D.2
9.如果一个单项式与的积为,则这个单项式为( )
A. B. C. D.
10.的值是 ( )
A. B. C. D.
11.规定一种运算:a*b=ab+a+b,则a*(-b)+ a*b计算结果为 ( )
A. 0 B. 2a C. 2b D.2a b
12.已知,,则与的值分别是 ( )
A. 4,1 B. 2, C.5,1 D. 10,
二、填空题
1.若,则 , ]
2.已知a- =3,则a2+2 的值等于 ·
3.如果x2-kx+9y2是一个完全平方式,则常数k=________________;
4.若,则a2-b2= ;(-2a2b3)3(3ab+2a2)
5.已知2m=x,43m=y,用含有字母x 的代数式表示y,则y=________________;
三、解答题
1.因式分解:
① ② ③
2.计算:① ②
③ ④(a+2b-3c)(a-2b+3c)
3.化简与求值:(a+b)(a-b)+(a+b)2-a(2a+b),其中a=,b=-1。
4.已知x(x-1)-(x2-y)=-2.求的值.
5.观察下列各式:
……
观察等式左边各项幂的底数与右边幂的底数的关系,猜一猜可以得出什么规律,并把这规律用等式写出来: .
6.阅读下列材料:
让我们来规定一种运算: =,
例如: =,再如: =4x-2
按照这种运算的规定:请解答下列各个问题:
① = (只填最后结果)
②当x= 时, =0
③求x,y的值,使 = = —7(写出解题过程)
7.如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如下图所示,则打包带的长至少要____________(单位:mm)。(用含x、y、z的代数式表示)
8.下图中,图⑴是一个扇形AOB,将其作如下划分:
第一次划分:如图⑵所示,以OA的一半OA1为半径画弧,再作∠AOB的平分线,得到扇形的总数为6个,分别为:扇形AOB,扇形AOC、扇形COB、扇形A1OB、扇形A1OC1、扇形C1OB1;
划分:如图⑶所示,扇形C1OB1中,按上述划分方式继续划分,可以得到扇形的总数为11个;第三次戈分:如图(4)所示;…依次划分下去.
(1)根据题意,完成右表:
(2)根据上表,请你判断按上述划分方式,能否得到扇形的总数为2007个?为什么?
参考答案:
一、选择题
1.C;2.C;3.C;4.C;5.C;6.A;7.C;8.B;9.B;10.C;11.B;12.C。
二、填空题1.5,1;2.11;3.6;4.3,1024;5.x6
三、解答题
1.略;2.略;3.-1;4.2;5.(3n+3)2;6.3.5,,x=8,y=2;7.2(x+y+z);8.填表略,不能,因为2007不是5的整数倍
展开全部
3.已知:如图∠A=∠D,AB‖DF,BC=EF,且B、C、E、F四点在同一条直线上。求证:AC=DE。
5.在△ABC中,CE⊥AB于E,在△ABC外作∠CAD=∠CAB,过C作CF⊥AD,交AD的延长线于F,且∠FDC=∠B,求证:BE=DF。
8.(6分)已知:如图,△ABC是等边三角形,在BC边上取点D,在边AC的延长线上取点E使DE=AD.求证:BD=CE.
9.分解因式① ②
10.计算
11.如图,已知AD‖BC,AD=CB,AE=CF。求证:DF=BE。
14.如图,在△ABC中,∠BAC=900,AB=AC,BD是中线,AF⊥BD,F为垂足,过点C作AB的平行线交AF的延长线于点E。
求证:(1)∠1=∠2;(2)AB=2CE
16.在直角△ABC中,锐角C的平分线交对边于E,又交斜边上的高AD于O,过O引OF‖CB交AB于F,求证:AE=BF.
17.分解因式① ②
③
18、计算
19.已知:如图AB=AC,∠B=∠C。 求证:AM=AN
22.已知如图:AB=AD,AC=AE,∠1=∠2,猜想∠1与∠3的大小关系,并证明你的猜想。
25.计算
26、计算 ,其中 , 。
27.如图,在△ABC中,AB边的垂直平分线DE交BC于E,垂足为D,若BC=7cm,AC=4 cm,求△ACE的周长。
28.已知,如图AC⊥CD,BD⊥CD,M是AB的中点,连结CM并延长交BD于E。求证:AC=BE。
29.(7分)如图(5),点C在线段AB上且△ACM,△CBN都是等边三角形,试判断△PQC的形状并证明你的结论.
33.已知如图,在△ABC中,∠ACB=900,∠B=600,
求证: BC= A B
35、(本题8分)如图,AD是△ABC中BC边上的中线,∠ADC为锐角,把△ADC沿直线AD折过来,点C落在点E的位置上。试猜想直线BE与直线DA的位置关系,并证明你的猜测。
36.(6分)已知a2+b2-10a-6b+34=0,求 的值.
37.(7分)已知AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F 求证:CE=DF.
38.(6分)某同学在打台球时,想通过击球A, 使撞击桌边MN后反弹回来击中彩球B,请在图上标明使主球撞击在MN上哪一点,才能达到目的?(不写作法保留作图痕迹)
42.已知:在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠C的度数。
5.在△ABC中,CE⊥AB于E,在△ABC外作∠CAD=∠CAB,过C作CF⊥AD,交AD的延长线于F,且∠FDC=∠B,求证:BE=DF。
8.(6分)已知:如图,△ABC是等边三角形,在BC边上取点D,在边AC的延长线上取点E使DE=AD.求证:BD=CE.
9.分解因式① ②
10.计算
11.如图,已知AD‖BC,AD=CB,AE=CF。求证:DF=BE。
14.如图,在△ABC中,∠BAC=900,AB=AC,BD是中线,AF⊥BD,F为垂足,过点C作AB的平行线交AF的延长线于点E。
求证:(1)∠1=∠2;(2)AB=2CE
16.在直角△ABC中,锐角C的平分线交对边于E,又交斜边上的高AD于O,过O引OF‖CB交AB于F,求证:AE=BF.
17.分解因式① ②
③
18、计算
19.已知:如图AB=AC,∠B=∠C。 求证:AM=AN
22.已知如图:AB=AD,AC=AE,∠1=∠2,猜想∠1与∠3的大小关系,并证明你的猜想。
25.计算
26、计算 ,其中 , 。
27.如图,在△ABC中,AB边的垂直平分线DE交BC于E,垂足为D,若BC=7cm,AC=4 cm,求△ACE的周长。
28.已知,如图AC⊥CD,BD⊥CD,M是AB的中点,连结CM并延长交BD于E。求证:AC=BE。
29.(7分)如图(5),点C在线段AB上且△ACM,△CBN都是等边三角形,试判断△PQC的形状并证明你的结论.
33.已知如图,在△ABC中,∠ACB=900,∠B=600,
求证: BC= A B
35、(本题8分)如图,AD是△ABC中BC边上的中线,∠ADC为锐角,把△ADC沿直线AD折过来,点C落在点E的位置上。试猜想直线BE与直线DA的位置关系,并证明你的猜测。
36.(6分)已知a2+b2-10a-6b+34=0,求 的值.
37.(7分)已知AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F 求证:CE=DF.
38.(6分)某同学在打台球时,想通过击球A, 使撞击桌边MN后反弹回来击中彩球B,请在图上标明使主球撞击在MN上哪一点,才能达到目的?(不写作法保留作图痕迹)
42.已知:在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠C的度数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询