
已知函数f(x)=loga 1-mx/x-1(a>0,a≠1,m≠1)是奇函数。
2个回答
展开全部
f(x)+f(-x)=0
loga 1-mx/x-1+loga 1+mx/(-x-1)=0
(1-mx)*(1+mx)/(x-1)(-x-1)=1
1-m^2x^2=1-x^2
(m^2-1)x^2=0
m1=1
m2=-1
m≠1
所以:
m=-1
f(x)=loga 1+x/x-1
2
定义域:1+x/x-1>0
x>1或x<-1
1<x1<x2
f(x2)-f(x1)=loga (1+x2)*(x1-1)/(x2-1)(1+x1)
(1+x2)*(x1-1)-(x2-1)(1+x1)
=x1x2-x2+x1-1-(x1x2-x1+x2-1)
=-x2+x1-x2+x1=-2*(x2-x1)<0
所以:
(1+x2)*(x1-1)>(x2-1)(1+x1)>0
f(x2)-f(x1)=loga (1+x2)*(x1-1)/(x2-1)(1+x1)>loga 1=0
所以x>1为增函数
由于为奇函数,x<-1也为增函数!
loga 1-mx/x-1+loga 1+mx/(-x-1)=0
(1-mx)*(1+mx)/(x-1)(-x-1)=1
1-m^2x^2=1-x^2
(m^2-1)x^2=0
m1=1
m2=-1
m≠1
所以:
m=-1
f(x)=loga 1+x/x-1
2
定义域:1+x/x-1>0
x>1或x<-1
1<x1<x2
f(x2)-f(x1)=loga (1+x2)*(x1-1)/(x2-1)(1+x1)
(1+x2)*(x1-1)-(x2-1)(1+x1)
=x1x2-x2+x1-1-(x1x2-x1+x2-1)
=-x2+x1-x2+x1=-2*(x2-x1)<0
所以:
(1+x2)*(x1-1)>(x2-1)(1+x1)>0
f(x2)-f(x1)=loga (1+x2)*(x1-1)/(x2-1)(1+x1)>loga 1=0
所以x>1为增函数
由于为奇函数,x<-1也为增函数!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询