什么是函数极限
6个回答
推荐于2017-09-14 · 知道合伙人数码行家
关注
展开全部
函数极限:
设f为定义在[a,+∞)上的函数,A为定数。若对任给的ε>0,存在正数M(>=a),使得当x>M时有:
|f(x)-A|<ε,
则称函数f当x趋于+∞时以A为极限,记作
lim f(x) = A 或 f(x)->A(x->+∞)
参考百度百科里的极限词条,呵呵,由本人创建。
设f为定义在[a,+∞)上的函数,A为定数。若对任给的ε>0,存在正数M(>=a),使得当x>M时有:
|f(x)-A|<ε,
则称函数f当x趋于+∞时以A为极限,记作
lim f(x) = A 或 f(x)->A(x->+∞)
参考百度百科里的极限词条,呵呵,由本人创建。
参考资料: http://baike.baidu.com/lemma-php/dispose/view.php/17644.htm
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
2019-04-26 · 移动学习,职达未来!
环球网校
环球网校成立于2003年,十多年来坚持“以学员为中心、以质量为本、以创新驱动”的经营理念,现已发展成为集考试研究、网络课程、直播课堂、题库、答疑、模考、图书、学员社区等为一体的规模化学习平台
向TA提问
关注
展开全部
23年二级建造师-新考季备考指导课
精编干货 高效通关
¥1元/科
23年一级建造师-备考资料大礼包
备考提速 精华知识点
¥1元/科
2021一级造价师-密训抢分
密训抢分冲刺
¥0元
2021一消名师100节精品课
超值体验,轻松取证
¥0元
2021年中级经济师-强化进阶体验课
知己知彼,三步破局
¥1元
2022年高级经济师-基础重塑课
基础重塑 高效备考
¥0元
2021健康管理师超值教程大礼包
教程课题一站式配齐
¥39元
四级人力资源管理师-备考指导
轻松入门人力资源师
¥0元
查
看
更
多
- 在线客服
-
官方服务
- 官方网站
- 精华资料
- 免费直播课
- 免费领课
- 领优惠券
- 考试日历
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
函数极限可以用如下方法定义:
设f(x)在实数x0的一个去心邻域U(x0, δ0)上(就是区间(x0 - δ0, x0 + δ0)去掉x0点这个集合之上)有定义, 如果对任意小的正数ε, 都存在一个正数δ, 和一个实数A, 使得当
|x - x0| < δ
时, 下式成立:
|f(x) - A| < ε
就说函数f(x)在x0点的极限是A, 记作
f(x) -> A
(x -> x0)
设f(x)在实数x0的一个去心邻域U(x0, δ0)上(就是区间(x0 - δ0, x0 + δ0)去掉x0点这个集合之上)有定义, 如果对任意小的正数ε, 都存在一个正数δ, 和一个实数A, 使得当
|x - x0| < δ
时, 下式成立:
|f(x) - A| < ε
就说函数f(x)在x0点的极限是A, 记作
f(x) -> A
(x -> x0)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
极限知识深入研究(2)
例2 用定义证明
规范证法 设 ,对于任意给定的ε>0,要使 ,只要 就可以了.因此,对于任意给定的ε>0,取 ,则当|x|>M时,
有时,我们还需要区分x趋于无穷大的符号.如果x从某一时刻起,往后总是取正值而且无限增大.则称x趋于正无穷大,记作x→+∞,此时定义中,|x|>M可改写为x>M,如果x从某一时刻起,往后总取负值且|x|无限增大,则称x趋于负无穷大,记作x→-∞,此时定义中的|x|>M可改写成x<-M.
函数极限可以用如下方法定义:
设f(x)在实数x0的一个去心邻域U(x0, δ0)上(就是区间(x0 - δ0, x0 + δ0)去掉x0点这个集合之上)有定义, 如果对任意小的正数ε, 都存在一个正数δ, 和一个实数A, 使得当
|x - x0| < δ
时, 下式成立:
|f(x) - A| < ε
就说函数f(x)在x0点的极限是A, 记作
f(x) -> A
(x -> x0)
例2 用定义证明
规范证法 设 ,对于任意给定的ε>0,要使 ,只要 就可以了.因此,对于任意给定的ε>0,取 ,则当|x|>M时,
有时,我们还需要区分x趋于无穷大的符号.如果x从某一时刻起,往后总是取正值而且无限增大.则称x趋于正无穷大,记作x→+∞,此时定义中,|x|>M可改写为x>M,如果x从某一时刻起,往后总取负值且|x|无限增大,则称x趋于负无穷大,记作x→-∞,此时定义中的|x|>M可改写成x<-M.
函数极限可以用如下方法定义:
设f(x)在实数x0的一个去心邻域U(x0, δ0)上(就是区间(x0 - δ0, x0 + δ0)去掉x0点这个集合之上)有定义, 如果对任意小的正数ε, 都存在一个正数δ, 和一个实数A, 使得当
|x - x0| < δ
时, 下式成立:
|f(x) - A| < ε
就说函数f(x)在x0点的极限是A, 记作
f(x) -> A
(x -> x0)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
极限知识深入研究(2)
例2 用定义证明
规范证法 设 ,对于任意给定的ε>0,要使 ,只要 就可以了.因此,对于任意给定的ε>0,取 ,则当|x|>M时,
有时,我们还需要区分x趋于无穷大的符号.如果x从某一时刻起,往后总是取正值而且无限增大.则称x趋于正无穷大,记作x→+∞,此时定义中,|x|>M可改写为x>M,如果x从某一时刻起,往后总取负值且|x|无限增大,则称x趋于负无穷大,记作x→-∞,此时定义中的|x|>M可改写成x<-M.
例3
例2 用定义证明
规范证法 设 ,对于任意给定的ε>0,要使 ,只要 就可以了.因此,对于任意给定的ε>0,取 ,则当|x|>M时,
有时,我们还需要区分x趋于无穷大的符号.如果x从某一时刻起,往后总是取正值而且无限增大.则称x趋于正无穷大,记作x→+∞,此时定义中,|x|>M可改写为x>M,如果x从某一时刻起,往后总取负值且|x|无限增大,则称x趋于负无穷大,记作x→-∞,此时定义中的|x|>M可改写成x<-M.
例3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询