求值:(1+cos20°)/2sin20°-sin10°(1/tan5°-tan5°)
2个回答
展开全部
[(1+cos20°)/2sin20°]-sin10°(1/tan5°-tan5°)
=[(1+cos20°)/2sin20°]-sin10°(cot5°-tan5°)
=[(1+cos20°)/4sin10°cos10°]-sin10°(cot5°-tan5°)
=(2cos10°/4sin10°)-2sin5°cos5°(cot5°-tan5°)
=(cos10°/2sin10°)-2((cos5°)^2-(sin5°)^2)
=(cos10°/2sin10°)-2cos10°
=(cos10°-4sin10°cos10°)/2sin10°
=(sin80°-2sin20°)/2sin10°
=((sin80°-sin20°)-sin20°)/2sin10°
=(2cos50°sin30°-sin20°)/2sin10°
=(sin40°-sin20°)/2sin10°
={2cos30°sin10°)/2sin10°
=cos30°
=(根号3)/2
=[(1+cos20°)/2sin20°]-sin10°(cot5°-tan5°)
=[(1+cos20°)/4sin10°cos10°]-sin10°(cot5°-tan5°)
=(2cos10°/4sin10°)-2sin5°cos5°(cot5°-tan5°)
=(cos10°/2sin10°)-2((cos5°)^2-(sin5°)^2)
=(cos10°/2sin10°)-2cos10°
=(cos10°-4sin10°cos10°)/2sin10°
=(sin80°-2sin20°)/2sin10°
=((sin80°-sin20°)-sin20°)/2sin10°
=(2cos50°sin30°-sin20°)/2sin10°
=(sin40°-sin20°)/2sin10°
={2cos30°sin10°)/2sin10°
=cos30°
=(根号3)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询