椭圆x^2/2+y^2=1及圆外一点M(0,2),过这点引直线与椭圆交于AB两点,求AB的中点P的轨迹方程

详解~~~... 详解~~~ 展开
侯宇诗houyushi
2009-02-03 · TA获得超过4411个赞
知道小有建树答主
回答量:1523
采纳率:33%
帮助的人:549万
展开全部

先联想一下,一个圆柱体,斜着砍一刀,得到椭圆。

从而圆与椭圆之间建立了一个一一对应

平面上所有点的横坐标乘(√2/2)

将椭圆变成圆C',圆心为O(0,0)

在椭圆所在的平面α与圆所在的平面α'建立一一对应的关系

A(x,y)->A'(√2x',y')

x=√2x'

y=y'

x^2/2+y^2=1

在圆所在的平面内

x'^2+y'^2=1

及圆外一点M'(0,2)

过这点引直线与圆C'交于A'B'两点

求A'B'的中点P'的轨迹方程

P'为A'B'的中点P'

所以

OP'垂直于P'M'

所以P'轨迹为圆,圆心为OM'中点

x'^2+(y'-1)^2=1

回到椭圆所在的平面

x=√2x'

y=y'

x^2/2+(y-1)^2=1

最后结论

x^2/2+(y-1)^2=1

x^2/2+y^2<1(椭圆内部)

lca001
2009-02-02 · TA获得超过1.4万个赞
知道大有可为答主
回答量:2493
采纳率:0%
帮助的人:1518万
展开全部
AB的中点P的轨迹方程是2(Y-5)^2+X^2=2。
设过点M(0,2)的直线为y=kx+2,将y=kx+2代入椭圆方程x^2/2+y^2=1得
(2k^2+1)x^2+8kx+6=0
x2,x2是方程的根,则有x1+x2=8k/(2k^2+1)
y1=kx1+2,y2=kx2+2
设AB的中点P的坐标为P(X,Y),则
X=(x1+x2)/2=4k/(2k^2+1)
Y=(y1+y2)/2=k(x1+x2)+4=4k^2/(2k^2+1)+4
X=4k/(2k^2+1)
Y-4=4k^2/(2k^2+1)
Y-4=kX,k=(Y-4)/X
将k=(Y-4)/X代入X=4k/(2k^2+1)
2(Y-4)^2-4(Y-4)+X^2=0
2(Y-5)^2+X^2=2
AB的中点P的轨迹方程是2(Y-5)^2+X^2=2,轨迹仍是一个椭圆。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
来也无影去无踪
2009-02-02 · TA获得超过5179个赞
知道大有可为答主
回答量:810
采纳率:0%
帮助的人:881万
展开全部
设过点M(0,2)的直线为y=kx+2,与椭圆方程x²/2+y²=1联立消去y得
(2k²+1)x²+8kx+6=0,设A坐标为(x1,y1),B坐标为(x2,y2)
由韦达定理可知,x1+x2=-8k/(2k²+1)
y1=kx1+2,y2=kx2+2,y1+y2=k(x1+x2)+4=-8k²/(2k²+1)+4=4/(2k²+1)
设AB的中点P的坐标为P(x,y),则
x=(x1+x2)/2=-4k/(2k²+1)
y=(y1+y2)/2=2/(2k²+1)
x/y=-2k,将k=-x/(2y)代入y=kx+2得:
y=-x²/(2y)+2
整理得到点P轨迹方程:x²/2 + (y-1)²=1
显然是一个椭圆在已知椭圆内的部分,下面来讨论x和y的取值范围:
二元二次方程组:
x²/2 + (y-1)²=1
x²/2 + y²=1
解得:x=±√6/2,y=1/2
综上所述,点P的轨迹方程为x²/2 + (y-1)²=1 {x∈(-√6/2,√6/2)}
注意:不能取闭区间,因为此时AB重合成为切点了,不和题意。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式