问一个物理专业的问题

我想系统的学习相对论,需要那些数理基础?目前数学高中水平,会一点微积分,物理也是高中水平。不知还要学哪些数学,物理。(听说有非欧几何)一楼说的已经看过n遍了。(时间简史,... 我想系统的学习相对论,需要那些数理基础?目前数学高中水平,会一点微积分,物理也是高中水平。不知还要学哪些数学,物理。(听说有非欧几何)
一楼说的已经看过n遍了。(时间简史,上帝粒子之类也看过) 没有说数学高中水平不能变动,希望附带提数学方面是的书。 本人是搞哲学的,不认为智力不够看不懂物理,如果是没学过(确实接触过)相对论的,就不要回答了,回答也不会采纳答案。
展开
 我来答
焦圣森
2009-02-08
知道答主
回答量:17
采纳率:0%
帮助的人:0
展开全部
马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是又能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。
狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。
相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
·狭义论公式
相对论公式及证明
符号 单位 符号 单位
坐标(x,y,z):m 力F(f): N
时间t(T): s 质量m(M): kg
位移r: m 动量p: kg*m/sm
速度v(u): m/s 能量E: J
加速度a: m/s^2 冲量: N*s I
长度l(L): m 动能Ek: J
路程s(S): m 势能Ep: J
角速度ω: rad/s 力矩: N*m M
角加速度: rad/s^2α 功率P: W
一:
牛顿力学(预备知识)
(一):质点运动学基本公式:(1)v=dr/dt,r=r0+∫rdt
(2)a=dv/dt,v=v0+∫adt
(注:两式中左式为微分形式,右式为积分形式)
当v不变时,(1)表示匀速直线运动。
当a不变时,(2)表示匀变速直线运动。
只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。
(二):质点动力学:
(1)牛一:一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。
(2)牛二:物体加速度与合外力成正比与质量成反比。
F=ma=mdv/dt=dp/dt
(3)牛三:作用在同一物体上的两个力,如果等大反向作用在同一直线上,则二力平衡。
(4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。
F=GMm/r^2,G=6.67259*10^(-11)m^3/(kg*s^2)
动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)
动量守恒:合外力为零时,系统动量保持不变。
动能定理:W=∫Fds=Ek2-Ek1(合外力的功等于动能的变化)
机械能守恒:只有重力做功时,Ek1+Ep1=Ek2+Ep2
(注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。)
二、狭义相对论力学
(注:“γ”为相对论因子,γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度。)
1.基本原理:(1)相对性原理:所有惯性系都是等价的。
(2)光速不变原理:真空中的光速是与惯性系无关的常数。
(此处先给出公式再给出证明)
2.洛仑兹坐标变换:
X=γ(x-ut)
Y=y
Z=z
T=γ(t-ux/c^2)
3.速度变换:
V(x)=(v(x)-u)/(1-v(x)u/c^2)
V(y)=v(y)/(γ(1-v(x)u/c^2))
V(z)=v(z)/(γ(1-v(x)u/c^2))
4.尺缩效应:△L=△l/γ或dL=dl/γ
5.钟慢效应:△t=γ△τ或dt=dτ/γ
6.光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)
(光源与探测器在一条直线上运动。)
7.动量表达式:P=Mv=γmv,即M=γm
8.相对论力学基本方程:F=dP/dt
9.质能方程:E=Mc^2
10.能量动量关系:E^2=(E0)^2+P^2c^2
(注:在此用两种方法证明,一种在三维空间内进行,一种在四维时空中证明,实际上他们是等价的。)
*******************************************************************************
三、三维证明
1.由实验总结出的公理,无法证明。
2.洛仑兹变换:
设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。
可令
x=k(X+uT) (1).
又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K.
故有
X=k(x-ut) (2).
对于y,z,Y,Z皆与速度无关,可得
Y=y (3).
Z=z (4).
将(2)代入(1)可得:x=k^2(x-ut)+kuT,即
T=kt+((1-k^2)/(ku))x (5).
(1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时,由重合点发出一光信号,则对两系分别有x=ct,X=cT.
代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u).两式相乘消去t和T得:
k=1/sqr(1-u^2/c^2)=γ.将γ反代入(2)(5)式得坐标变换:
X=γ(x-ut)
Y=y
Z=z
T=γ(t-ux/c^2)
3.速度变换:
V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))
=(dx/dt-u)/(1-(dx/dt)u/c^2)
=(v(x)-u)/(1-v(x)u/c^2)
同理可得V(y),V(z)的表达式。
4.尺缩效应:
B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ
5.钟慢效应:
由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T.
(注:与坐标系相对静止的物体的长度、质量和时间间隔称固有长度、静止质量和固有时,是不随坐标变换而变的客观量。)
6.光的多普勒效应:(注:声音的多普勒效应是:ν(a)=((u+v1)/(u-v2))ν(b).)
B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为
△t(a)=γ△t(b) (1).
探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则
△t(N)=(1+β)△t(a) (2).
相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即
ν(b)△t(b)=ν(a)△t(N) (3).
由以上三式可得:
ν(a)=sqr((1-β)/(1+β))ν(b).
7.动量表达式:(注:dt=γdτ,此时,γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c)
牛顿第二定律在伽利略变换下,保持形势不变,即无论在那个惯性系内,牛顿第二定律都成立,但在洛伦兹变换下,原本简洁的形式变得乱七八糟,因此有必要对牛顿定律进行修正,要求是在坐标变换下仍保持原有的简洁形式。
牛顿力学中,v=dr/dt,r在坐标变换下形式不变,(旧坐标系中为(x,y,z)新坐标系中为(X,Y,Z))只要将分母替换为一个不变量(当然非固有时dτ莫属)就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv.这就是相对论力学的基本量:相对论动量。(注:我们一般不用相对论速度而是用牛顿速度来参与计算)
8.相对论力学基本方程:
由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛顿第二定律的形式完全一样,但内涵不一样。(相对论中质量是变量)
9.质能方程:
Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv
=Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2
=Mv^2+Mc^2(1-v^2/c^2)-mc^2
=Mc^2-mc^2
即E=Mc^2=Ek+mc^2
10.能量动量关系:
E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2
*******************************************************************************
四、四维证明:
1.公理,无法证明。
2.坐标变换:由光速不变原理:dl=cdt,即dx^2+dy^2+dz^2+(icdt)^2=0在任意惯性系内都成立。定义dS为四维间隔,
dS^2=dx^2+dy^2+dz^2+(icdt)^2 (1).
则对光信号dS恒等于0,而对于任意两时空点的dS一般不为0。dS^2>0称类空间隔,dS^2<0称类时间隔,dS^2=0称类光间隔。相对论原理要求(1)式在坐标变换下形式不变,因此(1)式中存在与坐标变换无关的不变量,dS^2dS^2光速不变原理要求光信号在坐标变换下dS是不变量。因此在两个原理的共同制约下,可得出一个重要的结论:dS是坐标变换下的不变量。
由数学的旋转变换公式有:(保持y,z轴不动,旋转x和ict轴)
X=xcosφ+(ict)sinφ
icT=-xsinφ+(ict)cosφ
Y=y
Z=z
当X=0时,x=ut,则0=utcosφ+ictsinφ
得:tanφ=iu/c,则cosφ=γ,sinφ=iuγ/c反代入上式得:
X=γ(x-ut)
Y=y
Z=z
T=γ(t-ux/c^2)
3.4.5.6.略。
7.动量表达式及四维矢量:(注:γ=1/sqr(1-v^2/c^2),下式中dt=γdτ)
令r=(x,y,z,ict)则将v=dr/dt中的dt替换为dτ,V=dr/dτ称四维速度。
则V=(γv,icγ)γv为三维分量,v为三维速度,icγ为第四维分量。(以下同理)
四维动量:P=mV=(γmv,icγm)=(Mv,icM)
四维力:f=dP/dτ=γdP/dt=(γF,γicdM/dt)(F为三维力)
四维加速度:ω=/dτ=(γ^4a,γ^4iva/c)
则f=mdV/dτ=mω
8.略。
9.质能方程:
fV=mωV=m(γ^5va+i^2γ^5va)=0
故四维力与四维速度永远“垂直”,(类似于洛伦兹磁场力)
由fV=0得:γ^2mFv+γic(dM/dt)(icγm)=0(F,v为三维矢量,且Fv=dEk/dt(功率表达式))
故dEk/dt=c^2dM/dt即∫dEk=c^2∫dM,即:Ek=Mc^2-mc^2
故E=Mc^2=Ek+mc^2
·狭义论原理
物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。
伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。
著名的麦克尔逊·莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理:光速不变原理。
由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。
由于惯性系无法定义,爱因斯坦将相对性原理推广到非惯性系,提出了广义相对论的第一个原理:广义相对性原理。其内容是,所有参考系在描述自然定律时都是等效的。这与狭义相对性原理有很大区别。在不同参考系中,一切物理定律完全等价,没有任何描述上的区别。但在一切参考系中,这是不可能的,只能说不同参考系可以同样有效的描述自然律。这就需要我们寻找一种更好的描述方法来适应这种要求。通过狭义相对论,很容易证明旋转圆盘的圆周率大于3.14。因此,普通参考系应该用黎曼几何来描述。第二个原理是光速不变原理:光速在任意参考系内都是不变的。它等效于在四维时空中光的时空点是不动的。当时空是平直的,在三维空间中光以光速直线运动,当时空弯曲时,在三维空间中光沿着弯曲的空间运动。可以说引力可使光线偏折,但不可加速光子。第三个原理是最著名的等效原理。质量有两种,惯性质量是用来度量物体惯性大小的,起初由牛顿第二定律定义。引力质量度量物体引力荷的大小,起初由牛顿的万有引力定律定义。它们是互不相干的两个定律。惯性质量不等于电荷,甚至目前为止没有任何关系。那么惯性质量与引力质量(引力荷)在牛顿力学中不应该有任何关系。然而通过当代最精密的试验也无法发现它们之间的区别,惯性质量与引力质量严格成比例(选择适当系数可使它们严格相等)。广义相对论将惯性质量与引力质量完全相等作为等效原理的内容。惯性质量联系着惯性力,引力质量与引力相联系。这样,非惯性系与引力之间也建立了联系。那么在引力场中的任意一点都可以引入一个很小的自由降落参考系。由于惯性质量与引力质量相等,在此参考系内既不受惯性力也不受引力,可以使用狭义相对论的一切理论。初始条件相同时,等质量不等电荷的质点在同一电场中有不同的轨道,但是所有质点在同一引力场中只有唯一的轨道。等效原理使爱因斯坦认识到,引力场很可能不是时空中的外来场,而是一种几何场,是时空本身的一种性质。由于物质的存在,原本平直的时空变成了弯曲的黎曼时空。在广义相对论建立之初,曾有第四条原理,惯性定律:不受力(除去引力,因为引力不是真正的力)的物体做惯性运动。在黎曼时空中,就是沿着测地线运动。测地线是直线的推广,是两点间最短(或最长)的线,是唯一的。比如,球面的测地线是过球心的平面与球面截得的大圆的弧。但广义相对论的场方程建立后,这一定律可由场方程导出,于是惯性定律变成了惯性定理。值得一提的是,伽利略曾认为匀速圆周运动才是惯性运动,匀速直线运动总会闭合为一个圆。这样提出是为了解释行星运动。他自然被牛顿力学批的体无完肤,然而相对论又将它复活了,行星做的的确是惯性运动,只是不是标准的匀速。
·广义论的验证
爱因斯坦在建立广义相对论时,就提出了三个实验,并很快就得到了验证:(1)引力红移(2)光线偏折(3)水星近日点进动。直到最近才增加了第四个验证:(4)雷达回波的时间延迟。
(1)引力红移:广义相对论证明,引力势低的地方固有时间的流逝速度慢。也就是说离天体越近,时间越慢。这样,天体表面原子发出的光周期变长,由于光速不变,相应的频率变小,在光谱中向红光方向移动,称为引力红移。宇宙中有很多致密的天体,可以测量它们发出的光的频率,并与地球的相应原子发出的光作比较,发现红移量与相对论预言一致。60年代初,人们在地球引力场中利用伽玛射线的无反冲共振吸收效应(穆斯堡尔效应)测量了光垂直传播22。5M产生的红移,结果与相对论预言一致。
(2)光线偏折:如果按光的波动说,光在引力场中不应该有任何偏折,按半经典式的"量子论加牛顿引力论"的混合产物,用普朗克公式E=hr和质能公式E=MC^2求出光子的质量,再用牛顿万有引力定律得到的太阳附近的光的偏折角是0.87秒,按广义相对论计算的偏折角是1.75秒,为上述角度的两倍。1919年,一战刚结束,英国科学家爱丁顿派出两支考察队,利用日食的机会观测,观测的结果约为1.7秒,刚好在相对论实验误差范围之内。引起误差的主要原因是太阳大气对光线的偏折。最近依靠射电望远镜可以观测类星体的电波在太阳引力场中的偏折,不必等待日食这种稀有机会。精密测量进一步证实了相对论的结论。
(3)水星近日点的进动:天文观测记录了水星近日点每百年移动5600秒,人们考虑了各种因素,根据牛顿理论只能解释其中的5557秒,只剩43秒无法解释。广义相对论的计算结果与万有引力定律(平方反比定律)有所偏差,这一偏差刚好使水星的近日点每百年移动43秒。
(4)雷达回波实验:从地球向行星发射雷达信号,接收行星反射的信号,测量信号往返的时间,来检验空间是否弯曲(检验三角形内角和)60年代,美国物理学家克服重重困难做成了此实验,结果与相对论预言相符。
(5其他实验参见:【相对论验证实验系列】 http://tieba.baidu.com/f?kz=323205530
仅仅依靠这些实验不足以说明相对论的正确性,只能说明它是比牛顿引力理论更精确的理论,因为它既包含牛顿引力论,又可以解释牛顿理论无法解释的现象。但不能保证这就是最好的理论,因此,广义相对论仍面临考验。
a04051127
2009-02-09 · 超过13用户采纳过TA的回答
知道答主
回答量:33
采纳率:0%
帮助的人:31.5万
展开全部
时间简史之类的书也就是锦上添花用的吧

个人理解 相对论作为一种物理理论 和数学联系非常紧密 但也没必要过度追求数学 基础课高等数学 解析几何 线性代数 普通物理 理论(分析)力学 数学物理方法这些都必不可少 进一步的统计力学电动力学量子力学我没学过(我是学力学的) 但是相对论是在经典物理基础上提出来的 因此我想这些课程都少不了
相关的数学课程方面 泛函分析 微分几何 拓扑 和相对论联系会比较多

另外 很多课程在刚学的时候你看不出有什么用 但千万不要忽视他们
剩下的就是根据自己情况摸索了吧 反正这条路不好走 祝你好运了

好像是爱因斯坦说过 科学家每天都是星期天
但我想还有下句 科学家工作时不管是不是星期天
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Helius_physics
2009-02-14
知道答主
回答量:15
采纳率:0%
帮助的人:0
展开全部
那我给你讲:微积分线性代数,复分析,数学物理方程,泛函分析,普通物理,四大力学(分析,电动,统计,量子),拓扑理论,微分几何,广义相对论
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Newton3
2009-02-09
知道答主
回答量:5
采纳率:0%
帮助的人:0
展开全部
详细阅读有关微积分的书,最好可以学通。另外可以接触一些复变函数的内容。至于非欧几何,你最好在学好立体几何的基础上再看。当然,微分方程必须学到一定境界。
物理学方面在看完数学之前先不要接触。如果你仅仅是想学相对论的话就只需要学好电磁波的相关理论就好了。
至于相关书籍看你自己的爱好了,我很难给你推荐。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
mengfan5002
2009-02-07 · TA获得超过177个赞
知道小有建树答主
回答量:236
采纳率:0%
帮助的人:113万
展开全部
<数学物理方法><电动力学>相对论部分在后面内容而且是入门基础 对其拓展有帮助 再往后高中数学水平实在解决不了
涉及到微积分的查《高等数学》同济大学出版社
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式