三角形的外心、内心、重心、垂心各是什么,有什么性质?

最好有图形解释,谢谢各位... 最好有图形解释,谢谢各位 展开
蕞愛夕梨子
推荐于2017-09-25 · TA获得超过699个赞
知道答主
回答量:100
采纳率:0%
帮助的人:0
展开全部

外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。

外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。

注意到外心到三角形的三个顶点距离相等,结合垂直平分线定义,外心定理其实极好证。

计算外心的重心坐标是一件麻烦的事。先计算下列临时变量:

d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

内心是三角形三条内角平分线的交点,即内切圆的圆心。

内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。

内心定理:三角形的三内角平分线交于一点。该点叫做三角形的内心。

注意到内心到三边距离相等(为内切圆半径),内心定理其实极易证。

若三边分别为l1,l2,l3,周长为p,则内心的重心坐标(l1/p,l2/p,l3/p)。

直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。

双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。

重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。

重心的几条性质:

1、重心到顶点的距离与重心到对边中点的距离之比为2:1。

2、重心和三角形3个顶点组成的3个三角形面积相等。 

3、重心到三角形3个顶点距离的平方和最小。 

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3

三角形的三条高的交点叫做三角形的垂心。 

锐角三角形垂心在三角形内部。 

直角三角形垂心在三角形直角顶点。 

钝角三角形垂心在三角形外部。

垂心是高线的交点

垂心是从三角形的各顶点向其对边所作的三条垂线的交点。 

三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

三角形上作三高,三高必于垂心交。

高线分割三角形,出现直角三对整,

直角三角有十二,构成六对相似形,

四点共圆图中有,细心分析可找清, 

证明如第二张图,虽然“角”的符号成了乱码,但大家应该能看懂。CF为要证的高;两个角(DOC与BAD)相等后利用相似证,此部分从略。直角三角形的情况,直角顶点显然是垂心;钝角——大家没发现三角形OBC垂心就是A吗?

垂心的重心坐标反而比外心简单一点。先计算下列临时变量(与外心一样):

d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘(句子很长^_^)。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:( c1/c,c2/c,c3/c )。

王晨宇fairy风
2013-04-15
知道答主
回答量:20
采纳率:0%
帮助的人:5.4万
展开全部
三角形共有五心:
内心:三条角平分线的交点,也是三角形内切圆的圆心。
性质:到三边距离相等。
外心:三条中垂线的交点,也是三角形外接圆的圆心。
性质:到三个顶点距离相等。
重心:三条中线的交点。
性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍。
垂心:三条高所在直线的交点。
性质:此点分每条高线的两部分乘积
旁心:三角形任意两角的外角平分线和第三个角的内角平分线的交点
性质:到三边的距离相等。
6.三角形的外角(三角形内角的一边与其另一边的延长线所组成的角)等于与其不相邻的内角之和。
参考资料:http://baike.baidu.com/view/5670.htm 5670..

(1)重心和三顶点的连线所构成的三个三角形面积相等;
(2)外心扫三顶点的距离相等;
(3)垂心与三顶点这四点中,任一点是其余三点构成的三角形的垂心;
(4)内心、旁心到三边距离相等;
(5)垂心是三垂足构成的三角形的内心,或者说,三角形的内心是它旁心三角形的垂心;
(6)外心是中点三角形的垂心;
(7)中心也是中点三角形的重心;
(8)三角形的中点三角形的外心也是其垂足三角形的外心。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
370116
高赞答主

2009-02-08 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.4亿
展开全部
垂心是三角形三条高的交点
内心是三角形三条内角平分线的交点 即内接圆的圆心
重心是三角形三条中线的交点
外心是三角形三条边的垂直平分线的交点 即外接圆的圆心
旁心,是三角形两条外角平分线和一条内角平分线的交点
正三角形中,中心和重心,垂心,内心,外心重合!
垂心定理:三角形的三条高交于一点。该点叫做三角形的垂心
内心定理:三角形的三内角平分线交于一点。该点叫做三角形的内心。
旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点。该点叫做三角形的旁心。三角形有三个旁心。
重心定理:三角形的三条中线交于一点,这点到顶点的
离是它到对边中点距离的2倍。该点叫做三角形的重心。
外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
管承福帛祯
2019-10-23 · TA获得超过3.2万个赞
知道大有可为答主
回答量:1.2万
采纳率:28%
帮助的人:696万
展开全部
内心:三条角平分线的交点,也是三角形内切圆的圆心。
性质:到三边距离相等。
外心:三条中垂线的交点,也是三角形外接圆的圆心。
性质:到三个顶点距离相等。
重心:三条中线的交点。
性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍。
垂心:三条高所在直线的交点。
性质:此点分每条高线的两部分乘积
旁心:三角形任意两角的外角平分线和第三个角的内角平分线的交点
性质:到三边的距离相等。
界心:经过三角形一顶点的把三角形周长分成1:1的直线与三角形一边的交点。
性质:三角形共有3个界心,三个界心分别与其对应的三角形顶点相连而成的三条直线交于一点。
欧拉线:三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
王书明111
2009-02-08 · TA获得超过1403个赞
知道小有建树答主
回答量:485
采纳率:0%
帮助的人:0
展开全部
垂直平分线的交点
角平分线的交点
中线的交点
高线的交点
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式