如图所示,AB‖CD,分别探讨下面四个图形中,∠APC与∠PAB,∠PCD的关系,
展开全部
考点:平行线的性质.
专题:证明题.分析:图1:首先过点P作PE∥AB,由AB∥CD,即可得AB∥PE∥CD,然后根据两直线平行,内错角相等,即可求得答案;图2:首先过点P作PE∥AB,由AB∥CD,即可得AB∥PE∥CD,然后根据两直线平行,同旁内角互补,即可求得答案;
图3:由AB∥CD,根据两直线平行,同位角相等,即可求得∠A=∠1,又由三角形外角的性质,即可求得答案;
图4:由AB∥CD,根据两直线平行,内错角相等,即可求得∠A=∠1,又由三角形外角的性质,即可求得答案.解答:解:图1:∠APC=∠PAB+∠PCD.
理由:过点P作PE∥AB,
∵AB∥CD,
∴AB∥PE∥CD(平行线的传递性),
∴∠1=∠A,∠2=∠C,
∴∠APC=∠1+∠2=∠PAB+∠PCD,即∠APC=∠PAB+∠PCD;
图2:∠APC+∠PAB+∠PCD=360°.
理由:过点P作PE∥AB.
∵AB∥CD,
∴AB∥PE∥CD(平行线的传递性),
∴∠A+∠1=180°,∠2+∠C=180°,
∴∠A+∠1+∠2+∠C=360°,
∴∠APC+∠PAB+∠PCD=360°;
图3:∠APC=∠PCD-∠PAB.
理由:延长DC交AP于点E.
∵AB∥CD,
∴∠1=∠PAB(两直线平行,同位角相等);
又∵∠PCD=∠1+∠APC,
∴∠APC=∠PCD-∠PAB;
图4:∴∠PAB=∠APC+∠PCD.
理由:∵AB∥BC,
∴∠1=∠PAB(两直线平行,内错角相等);
又∵∠1=∠APC+∠PCD,
∴∠PAB=∠APC+∠PCD.点评:此题考查了平行线的性质与三角形外角的性质.此题难度不大,解题的关键是掌握两直线平行,同旁内角互补,两直线平行,内错角相等以及两直线平行,同位角相等定理的应用与辅助线的作法.
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
第一个图:连接AC可知:∠APC+∠PAB+∠PCD=360度;
【∠BAC+∠DCA=180;三角形内角和180】
第二个图:连接AC可知:∠APC=∠PAB+∠PCD;
【【∠BAC+∠DCA=180;∠CAP+∠ACP+∠APC=180】
第三个图:∠APC+∠PAB=∠PCD;
【交点为N,∠CNB=∠ANP;三内角和180;∠BNC+∠NCD=180】
第四个图:∠APC+∠PCD=∠PAB;
同上理。
【∠BAC+∠DCA=180;三角形内角和180】
第二个图:连接AC可知:∠APC=∠PAB+∠PCD;
【【∠BAC+∠DCA=180;∠CAP+∠ACP+∠APC=180】
第三个图:∠APC+∠PAB=∠PCD;
【交点为N,∠CNB=∠ANP;三内角和180;∠BNC+∠NCD=180】
第四个图:∠APC+∠PCD=∠PAB;
同上理。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:①∠BAP+∠APC+∠PCD=360°;
②∠APC=∠BAP+∠PCD;
③∠BAP=∠APC+∠PCD;
④∠PCD=∠APC+∠PAB.
如②,可作PE‖AB,(如图)
因为PE‖AB‖CD,
所以∠BAP=∠APE,∠EPC=∠PCD.
所以∠APE+∠EPC=∠BAP+∠PCD,
即∠APC=∠PAB+∠PCD.
②∠APC=∠BAP+∠PCD;
③∠BAP=∠APC+∠PCD;
④∠PCD=∠APC+∠PAB.
如②,可作PE‖AB,(如图)
因为PE‖AB‖CD,
所以∠BAP=∠APE,∠EPC=∠PCD.
所以∠APE+∠EPC=∠BAP+∠PCD,
即∠APC=∠PAB+∠PCD.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询