三角形ABC中三个内角A,B,C的对边分别是a,b,c 已知a^2+c^2=b^2+ac 且a:c=根号3+1:2 求角C的大小
展开全部
C=45.
由a^2+c^2=b^2+ac得a^2+c^2-b^2=ac,
由余弦定理得cosB=(a^2+c^2-b^2)/(2ac)=ac/(2ac)=1/2
故有B=60,A+C=180-B=120.A=120-C.
再由正弦定理得sinA/sinC=a/c=(√3+1)/2
2sinA=(√3+1)sinC,2sin(120-C)=(√3+1)sinC
2sin120cosC-2sinCcos120=(√3+1)sinC
√3cosC+sinC=(√3+1)sinC
√3cosC=√3sinC
tanC=1,故得C=45
由a^2+c^2=b^2+ac得a^2+c^2-b^2=ac,
由余弦定理得cosB=(a^2+c^2-b^2)/(2ac)=ac/(2ac)=1/2
故有B=60,A+C=180-B=120.A=120-C.
再由正弦定理得sinA/sinC=a/c=(√3+1)/2
2sinA=(√3+1)sinC,2sin(120-C)=(√3+1)sinC
2sin120cosC-2sinCcos120=(√3+1)sinC
√3cosC+sinC=(√3+1)sinC
√3cosC=√3sinC
tanC=1,故得C=45
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询