三角形内切圆性质、内心:与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形,三角形的内心是三角形三条角平分线的交点。
三角形外接圆性质、外心:与多边形各顶点都相交的圆叫做多边形的外接圆。三角形有外接圆,其他的图形不一定有外接圆。 三角形的外接圆圆心是任意两边的垂直平分线的交点。 三角形外接圆圆心叫外心。
三角形中心、重心:三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心。
扩展资料
三角形性质:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
7、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
8、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
*勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c² ,那么这个三角形是直角三角形。
9、直角三角形斜边的中线等于斜边的一半。
10、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
与多边形各边都相切的圆叫做多边型的内切圆。
三角形一定有内切圆,其他的图形不一定有内切圆。
外接圆
与多边形各角都相交的圆叫做多边型的外接圆。
三角形一定有外接圆,其他的图形不一定有外接圆。
三角形共有五心:
内心:三条角平分线的交点,也是三角形内切圆的圆心。
性质:到三边距离相等。
外心:三条中垂线的交点,也是三角形外接圆的圆心。
性质:到三个顶点距离相等。
重心:三条中线的交点。
性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍。
垂心:三条高所在直线的交点。
性质:此点分每条高线的两部分乘积
旁心:三角形任意两角的外角平分线和第三个角的内角平分线的交点
在三角形中,三个角的角平分线的交点是内切圆的圆心,
圆心到三角形各个边的垂线段相等.
在直角三角形的内切圆中,有这样两个公式:
1:两直角边的加和减去斜边后除以2.得数是内切圆的半径.
2:两直角边乘积除以直角三角形周长 ,得数是内切圆的半径.
1:r=2S/(a+b+c)(注:s是三角形的面积,a, b, c,是三角形的三个边)!
2:r=ab/ (a+b+c)
过三角形三个顶点的圆叫三角形外接圆。
三角形的外接圆圆心是三条中垂线的交点,直角三角形的外接圆圆心在斜边的中点上。
三角形外接圆圆心叫外心
三角形中心是三角形三条边的垂直平分线交点.
重心是三角形三边中线的交点。
重心的几条性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3
参考资料: 百度百科
1:r=2S/(a+b+c)(注:s是三角形的面积,a, b, c,是三角形的三个边)!
2:r=ab/ (a+b+c)
三角形的外接圆圆心是三条中垂线的交点,直角三角形的外接圆圆心在斜边的中点上。
内心是三角形三条内角平分线的交点,即内切圆的圆心。
内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。
内心定理:三角形的三内角平分线交于一点。该点叫做三角形的内心。
三角形的外心也是三角形外接圆的圆心,在同一平面内该点到三角形三个顶点的距离相等,
三角形中心是三角形三条边的垂直平分线交点.