关于数学代数问题
xy+x+y=17x^2y+xy^2=66那么x^4+x^3y+x^2y^2+xy^3+y^4=??(空格是乘号,我怕大家看迷糊了所以隔开来)要过程哦。。。...
xy+x+y=17 x^2 y+x y^2=66
那么x^4+x^3 y+x^2 y^2+x y^3+y^4=?? (空格是乘号,我怕大家看迷糊了所以隔开来)
要过程哦。。。 展开
那么x^4+x^3 y+x^2 y^2+x y^3+y^4=?? (空格是乘号,我怕大家看迷糊了所以隔开来)
要过程哦。。。 展开
展开全部
解:
因为xy+x+y=17,x^2y+xy^2=66
所以xy+(x+y)=17,xy(x+y)=66
所以xy=6,x+y=11
(xy=11,x+y=6时x、y无实数解)
所以x^2+y^2=(x+y)^2-2xy=121-12=109
那么
x^4+x^3y+x^2y^2+xy^3+y^4
=(x^2+y^2)^2-x^2y^2+xy(x^2+y^2)
=109*109-36+6*109
=12499
江苏吴云超祝你学习进步
因为xy+x+y=17,x^2y+xy^2=66
所以xy+(x+y)=17,xy(x+y)=66
所以xy=6,x+y=11
(xy=11,x+y=6时x、y无实数解)
所以x^2+y^2=(x+y)^2-2xy=121-12=109
那么
x^4+x^3y+x^2y^2+xy^3+y^4
=(x^2+y^2)^2-x^2y^2+xy(x^2+y^2)
=109*109-36+6*109
=12499
江苏吴云超祝你学习进步
参考资料: http://hi.baidu.com/jswyc/blog/item/ef844d26db671d04908f9d3c.html
展开全部
(xy)+(x+y)=17,(xy)(x+y)=66.
xy,x+y为方程t²-17t+66=0的两个解。t=6或者11
x+y=11,xy=6(另一组无效,删去)
x²+y²=11²-2×6=109
x^4+x^3 y+x^2 y^2+x y^3+y^4
=(x²+y²+xy)(x²+y²-xy)+xy(x²+y²)
=(109+6)(109-6)+6×109
=12499.
(用到x^4+x²y²+y^4=(x²+y²+xy)(x²+y²-xy))
xy,x+y为方程t²-17t+66=0的两个解。t=6或者11
x+y=11,xy=6(另一组无效,删去)
x²+y²=11²-2×6=109
x^4+x^3 y+x^2 y^2+x y^3+y^4
=(x²+y²+xy)(x²+y²-xy)+xy(x²+y²)
=(109+6)(109-6)+6×109
=12499.
(用到x^4+x²y²+y^4=(x²+y²+xy)(x²+y²-xy))
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询