∫(1/sinx)dx=?

希望详细些谢谢... 希望详细些谢谢 展开
zy219710
高粉答主

2019-04-25 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1594
采纳率:100%
帮助的人:52万
展开全部

∫1/sinxdx

=∫sinx/sin^2xdx

=-∫dcosx/(1-cos^2x)

=-∫dt/(1-t^2)

[令t=cosx]

=-1/2∫(1/(t+1)-1/(t-1))dt

=-1/2(ln|t+1|-ln|t-1|)+C

=-1/2ln|(cosx+1)/(cosx-1)|+C

扩展资料:

求不定积分的方法:

1、换元积分法:

可分为第一类换元法与第二类换元法。

第一类换元法(即凑微分法)

第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。

第二类换元法又可利用根式代换法和三角代换法进行积分求解。

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。一个不定积分的原函数有无数个。

昆仑手_夺命剑
推荐于2017-09-16 · TA获得超过3468个赞
知道小有建树答主
回答量:1204
采纳率:100%
帮助的人:1529万
展开全部
∫1/(sinx)dx
=∫cscxdx
=∫sinx/(1-cos²x) dx
=-∫dcosx/(1-cos²x)
=-1/2[∫dcosx/(1-cosx)+∫dcosx/(1+cosx)]
= -1/2[∫-d(1-cosx)/(1-cosx)+∫d(1+cosx)/(1+cosx)]
=-1/2ln(1+cosx)/ (1-cosx)+C
=ln[(1-cosx)/sinx]+C
=ln(cscx-cotx)+C
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式