急急急!两道线性代数的证明题 请高人指点!!
1.letW1andW2besubspacesofavectorspaceVhavingdimensionsmandn,wherem>=n.(a)Provethatdim...
1. let W1 and W2 be subspaces of a vector space V having dimensions m and n, where m>=n.
(a)Prove that dim(W1交W2)<=n.
(b)Prove that dim(W1+W2)<=m+n.
2.Assume that T:V->V is the projection on W1 along W2
(For example, if T(a,b,c)=(a,b,0) then this is the projection on the xy-plane along z-axis.)
(a)Prove that T is linear and W1={x属于V: T(x)=x}
(b)Prove that W1=rank(T) and W2=ker(T).
(c)Describe T if W1=V
(d)Describe T if W1 is the zero subspace
不是英语问题 请给出详细证明或思路讲解 多谢!!!!!!
另外一个例子可以是:If T(a,b,c)=(a-c,b,0) show that T is the projection on the xy-plane along the line L={a,0,a:a属于R}. 展开
(a)Prove that dim(W1交W2)<=n.
(b)Prove that dim(W1+W2)<=m+n.
2.Assume that T:V->V is the projection on W1 along W2
(For example, if T(a,b,c)=(a,b,0) then this is the projection on the xy-plane along z-axis.)
(a)Prove that T is linear and W1={x属于V: T(x)=x}
(b)Prove that W1=rank(T) and W2=ker(T).
(c)Describe T if W1=V
(d)Describe T if W1 is the zero subspace
不是英语问题 请给出详细证明或思路讲解 多谢!!!!!!
另外一个例子可以是:If T(a,b,c)=(a-c,b,0) show that T is the projection on the xy-plane along the line L={a,0,a:a属于R}. 展开
2个回答
展开全部
这个非常难,请另请高人。不过我认识的一个人可能知道,如果你有邮箱,写上,会告诉你答案的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)you have ignored an important formular:
dim(W1)+dim(W2)=dim(W1∩W2)+dim(W1+W2)
since
dim(W1+W2)≥m so dim(W1∩W2)≤n
and
dim(W1∩W2)≥1 so dim(W1+W2)<=m+n
(2)I holp you can provide a definition.I assume for any α∈W2,P(α)=0,that means W2 is the kernal of projection.
1.by the definition of projection.
2.by the definition of range and kernal
3.identity transformation,that is obviously
4.zero transformation.
dim(W1)+dim(W2)=dim(W1∩W2)+dim(W1+W2)
since
dim(W1+W2)≥m so dim(W1∩W2)≤n
and
dim(W1∩W2)≥1 so dim(W1+W2)<=m+n
(2)I holp you can provide a definition.I assume for any α∈W2,P(α)=0,that means W2 is the kernal of projection.
1.by the definition of projection.
2.by the definition of range and kernal
3.identity transformation,that is obviously
4.zero transformation.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询