已知函数f(x)=(x2+2x+a)/x
已知函数f(x)=(x2+2x+a)/x,x∈〔1,+∞)(1)当A=1/2时,求函数f(x)的最小值(2)若对任意x∈1,+∞),f(x)>0恒成立,试求实数a的取值范...
已知函数f(x)=(x2+2x+a)/x,x∈〔1,+∞)(1)当A=1/2时,求函数f(x)的最小值(2) 若对任意x∈1,+∞),f(x)>0恒成立,试求实数a的取值范围
展开
展开全部
1
f(x)=(x2+2x+1/2)/x=x+1/(2x)+2
令a>b>1,则f(a)-f(b)=(a-b)+(1/2)(b-a)/(ab)
=(a-b)[1-1/(2ab)]
a>b>1,∴a-b>0,1-1/(2ab)>0;
∴f(a)-f(b)=(a-b)[1-1/(2ab)]>0;
f(a)>f(b);f(x)在x∈〔1,+∞)上单调递增;
∴函数f(x)的最小值是f(1)=7/2;
2
f(x)=(x2+2x+a)/x
=[(x+1)^2+(a-1)]/x
∵x>1,
∴只要(x+1)^2+(a-1)>0,那么f(x)=[(x+1)^2+(a-1)]/x>0恒成立
x>1,则(x+1)^2>4;
∴必须a-1>-4,才能保证对任意x∈1,+∞),(x+1)^2+(a-1)>0.
∴a>-3
f(x)=(x2+2x+1/2)/x=x+1/(2x)+2
令a>b>1,则f(a)-f(b)=(a-b)+(1/2)(b-a)/(ab)
=(a-b)[1-1/(2ab)]
a>b>1,∴a-b>0,1-1/(2ab)>0;
∴f(a)-f(b)=(a-b)[1-1/(2ab)]>0;
f(a)>f(b);f(x)在x∈〔1,+∞)上单调递增;
∴函数f(x)的最小值是f(1)=7/2;
2
f(x)=(x2+2x+a)/x
=[(x+1)^2+(a-1)]/x
∵x>1,
∴只要(x+1)^2+(a-1)>0,那么f(x)=[(x+1)^2+(a-1)]/x>0恒成立
x>1,则(x+1)^2>4;
∴必须a-1>-4,才能保证对任意x∈1,+∞),(x+1)^2+(a-1)>0.
∴a>-3
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
1
f(x)=(x2+2x+1/2)/x=x+1/(2x)+2
令a>b>1,则f(a)-f(b)=(a-b)+(1/2)(b-a)/(ab)
=(a-b)[1-1/(2ab)]
a>b>1,∴a-b>0,1-1/(2ab)>0;
∴f(a)-f(b)=(a-b)[1-1/(2ab)]>0;
f(a)>f(b);f(x)在x∈〔1,+∞)上单调递增;
∴函数f(x)的最小值是f(1)=7/2;
2
f(x)=(x2+2x+a)/x
=[(x+1)^2+(a-1)]/x
∵x>1,
∴只要(x+1)^2+(a-1)>0,那么f(x)=[(x+1)^2+(a-1)]/x>0恒成立
x>1,则(x+1)^2>4;
∴必须a-1>-4,才能保证对任意x∈1,+∞),(x+1)^2+(a-1)>0.
∴a>-3
f(x)=(x2+2x+1/2)/x=x+1/(2x)+2
令a>b>1,则f(a)-f(b)=(a-b)+(1/2)(b-a)/(ab)
=(a-b)[1-1/(2ab)]
a>b>1,∴a-b>0,1-1/(2ab)>0;
∴f(a)-f(b)=(a-b)[1-1/(2ab)]>0;
f(a)>f(b);f(x)在x∈〔1,+∞)上单调递增;
∴函数f(x)的最小值是f(1)=7/2;
2
f(x)=(x2+2x+a)/x
=[(x+1)^2+(a-1)]/x
∵x>1,
∴只要(x+1)^2+(a-1)>0,那么f(x)=[(x+1)^2+(a-1)]/x>0恒成立
x>1,则(x+1)^2>4;
∴必须a-1>-4,才能保证对任意x∈1,+∞),(x+1)^2+(a-1)>0.
∴a>-3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)当A=1/2时,求函数f(x)的最小值
解答如下:
f(x)=(x2+2x+a)/x,
=x+2+1/2x
由于x∈〔1,+∞),x>0
所以:
f(x)=x+2+1/2x
〉=2(1/2开根号)+2
所以最小值为:2+(2开根号)。
(2) 若对任意x∈1,+∞),f(x)>0恒成立,试求实数a的取值范围
因为分母已经大于,所以只需分子大于0即可。
分子=x2+2x+a,
其对称轴=-1,所以在区间x∈1,+∞)上,分子是个增函数,所以只需要
f(1)>0即可,可以得到:
a>-3.
解答如下:
f(x)=(x2+2x+a)/x,
=x+2+1/2x
由于x∈〔1,+∞),x>0
所以:
f(x)=x+2+1/2x
〉=2(1/2开根号)+2
所以最小值为:2+(2开根号)。
(2) 若对任意x∈1,+∞),f(x)>0恒成立,试求实数a的取值范围
因为分母已经大于,所以只需分子大于0即可。
分子=x2+2x+a,
其对称轴=-1,所以在区间x∈1,+∞)上,分子是个增函数,所以只需要
f(1)>0即可,可以得到:
a>-3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询