将下列复合函数分解为基本初等函数的复合运算或四则运算
y=sine^√xy=√lntanx^2非常感谢,我要有步骤的做法,嘿嘿,最好加以解释说明;没明白是什么意思,太复杂了;...
y=sin e^√x
y=√lntan x^2
非常感谢,我要有步骤的做法,嘿嘿,最好加以解释说明;
没明白是什么意思,太复杂了; 展开
y=√lntan x^2
非常感谢,我要有步骤的做法,嘿嘿,最好加以解释说明;
没明白是什么意思,太复杂了; 展开
1个回答
展开全部
分解的原则就是按照运算顺序一层一层的去掉,比如y=sin e^√x,他的最后一步运算时sin,所以先去sin,就设h(x)=sin(x),去掉sin后的最后一步运算是求指数e^√x,所以设g(x)=e^x,接着,去掉e后的最后一步运算是开方√x,所以设f(x)=√x,至此可以把h,g,f复合起来就是原函数了。第二题同理。
对于y=sin e^√x,令h(x)=sin(x),g(x)=e^x,f(x)=√x,那么
它们的复合函数h{g[f(x)]}=h[g(√x)]=h(e^√x)=sin e^√x
对于y=√lntan x^2,令P(x)=√x,h(x)=ln(x),g(x)=tan(x),f(x)=x^2,那么
它们的复合函数
P{h{g[f(x)]}}=P{h[g(x^2)]}=P{h[tan(x^2)]}=P[lntan(x^2)]=√lntan(x^2)
对于y=sin e^√x,令h(x)=sin(x),g(x)=e^x,f(x)=√x,那么
它们的复合函数h{g[f(x)]}=h[g(√x)]=h(e^√x)=sin e^√x
对于y=√lntan x^2,令P(x)=√x,h(x)=ln(x),g(x)=tan(x),f(x)=x^2,那么
它们的复合函数
P{h{g[f(x)]}}=P{h[g(x^2)]}=P{h[tan(x^2)]}=P[lntan(x^2)]=√lntan(x^2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |