2013-11-28
展开全部
有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。
过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢”我说:“光用1元要组成大一点的数就不方便了呀。这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!
过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢”我说:“光用1元要组成大一点的数就不方便了呀。这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!
展开全部
生活中的数学
你看见过北京雄伟的“鸟巢”和魔幻般的“水立方”了吗?你看到我国的“神州七号”宇宙飞船平安返回地球了吗?在你与世界各地的人民共同赞叹它们的神奇之余,有没有想到过设计建设、制造它们时,科学家们运用了多少的数学知识来解决问题的呢?
你有去商店买东西的经历吗?你有与你的同伴分享物品的经历吗?这时,你都在不知不觉中运用了数学知识。
其实数学来源了生活,又服务了生活,在生活中数学的运用无处不在。
作为中学生,我们所掌握的知识,虽然还不能解决宇宙飞船上天、奥运场馆设计等问题,但是也可以解决一些生活中较为复杂的实际问题了。
就如前几天吧,数学知识可帮了我大忙呢!
我生日快到了,我想亲自动手制作生日会上的生日礼帽,说做就做,我匆忙的去买了彩纸,画上扇形,再剪下来……,一两下全搞定了,我拿着刚做好的生日礼帽,沾沾自喜,往头上一戴,真是吓了一跳,生日礼帽把我的脸都遮住了。于是我又重新做一个,心想:刚才做的太大了,现在我做的小点,该不会再有什么问题了吧!可是,事与愿违,这次又太小了。真是一肚子火,一下子太大,一下子又太小,搞什么呀!正在我火冒三丈,拿生日礼帽没辙时,一个电话提醒了我。
原来,是我的同学问我数学作业怎么做。于是我脑子里一下子闪过:这几天我们不是刚学过有关圆锥的知识吗?唉,我真是糊涂啊!有近路不走绕远路,自找麻烦。
于是,我便行动起来。
首先静下心来,在脑子里勾画一下那生日礼帽的形状与结构。
然后画出礼帽展开后的大致图像:它是一个扇形,半径为圆锥的母线长,弧长为圆锥底面周长——帽子口的大小。因此,要先测量我们头的大小,确定帽子口的大小,根据圆的周长公式c=2πr,可以知道圆锥底面半径r(帽子口的半径),还有要做的礼帽有多高应想先好哦。
在脑子里构思好以后,就开始具体的实施工作:用皮尺量的自己的头一周为5
7cm,且准备要做的礼帽的高为28.5cm。
接着计算如下
∵
c=2πr
即
57=2×πr
∴r≈9
cm;
∵
l2
=h2
+r2
∴l=30cm;
而扇形的弧长即底面周长2πr
=nπl/180
∴圆心角n=57×180/15π
≈109°。
计算好后,准备纸张,照计算好的尺寸画扇形(留出捏合的缝地),再用剪刀剪出扇形,最后用双面胶把扇形的两条半径处捏合在一起,这样一顶生日礼帽就做好了。
生活中处处有数学,我们只要学好理论知识,并学会运用,那么我们就可以解决生活中许多旦处测肺爻镀诧僧超吉数学问题。理论要与实际相结合,数学知识就不再只为做题而思考了,而是可以为我们生活的需要服务
你看见过北京雄伟的“鸟巢”和魔幻般的“水立方”了吗?你看到我国的“神州七号”宇宙飞船平安返回地球了吗?在你与世界各地的人民共同赞叹它们的神奇之余,有没有想到过设计建设、制造它们时,科学家们运用了多少的数学知识来解决问题的呢?
你有去商店买东西的经历吗?你有与你的同伴分享物品的经历吗?这时,你都在不知不觉中运用了数学知识。
其实数学来源了生活,又服务了生活,在生活中数学的运用无处不在。
作为中学生,我们所掌握的知识,虽然还不能解决宇宙飞船上天、奥运场馆设计等问题,但是也可以解决一些生活中较为复杂的实际问题了。
就如前几天吧,数学知识可帮了我大忙呢!
我生日快到了,我想亲自动手制作生日会上的生日礼帽,说做就做,我匆忙的去买了彩纸,画上扇形,再剪下来……,一两下全搞定了,我拿着刚做好的生日礼帽,沾沾自喜,往头上一戴,真是吓了一跳,生日礼帽把我的脸都遮住了。于是我又重新做一个,心想:刚才做的太大了,现在我做的小点,该不会再有什么问题了吧!可是,事与愿违,这次又太小了。真是一肚子火,一下子太大,一下子又太小,搞什么呀!正在我火冒三丈,拿生日礼帽没辙时,一个电话提醒了我。
原来,是我的同学问我数学作业怎么做。于是我脑子里一下子闪过:这几天我们不是刚学过有关圆锥的知识吗?唉,我真是糊涂啊!有近路不走绕远路,自找麻烦。
于是,我便行动起来。
首先静下心来,在脑子里勾画一下那生日礼帽的形状与结构。
然后画出礼帽展开后的大致图像:它是一个扇形,半径为圆锥的母线长,弧长为圆锥底面周长——帽子口的大小。因此,要先测量我们头的大小,确定帽子口的大小,根据圆的周长公式c=2πr,可以知道圆锥底面半径r(帽子口的半径),还有要做的礼帽有多高应想先好哦。
在脑子里构思好以后,就开始具体的实施工作:用皮尺量的自己的头一周为5
7cm,且准备要做的礼帽的高为28.5cm。
接着计算如下
∵
c=2πr
即
57=2×πr
∴r≈9
cm;
∵
l2
=h2
+r2
∴l=30cm;
而扇形的弧长即底面周长2πr
=nπl/180
∴圆心角n=57×180/15π
≈109°。
计算好后,准备纸张,照计算好的尺寸画扇形(留出捏合的缝地),再用剪刀剪出扇形,最后用双面胶把扇形的两条半径处捏合在一起,这样一顶生日礼帽就做好了。
生活中处处有数学,我们只要学好理论知识,并学会运用,那么我们就可以解决生活中许多旦处测肺爻镀诧僧超吉数学问题。理论要与实际相结合,数学知识就不再只为做题而思考了,而是可以为我们生活的需要服务
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-11-28
展开全部
感悟数学 曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r�0�5,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r�0�5=9�0�5∏+6�0�5∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r�0�5=15�0�5∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
、\一个一个一个一个事个事如何好了三儿孑然一身
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询