高一数学 14题
展开全部
y=sin2x+2√2cos(π/4+x)+3
=cos(2x-π/2)+2√2cos(π/4+x)+3
=1-2sin²(x-π/4)-2√2sin(x-π/4)+3
=4-2[sin²(x-π/4)+√2sin(x-π/4)]
令sin(x-π/4)=t,则-1≤t≤1于是
y=4-2(t²+√2t)
y=4-2(t²+√2t+1/2)+2*1/2
=4-2(t-√2/2)²+1
=5-2(t-√2/2)² (-1≤t≤1)
当t=-1时,函数取得最小值
4-2[(-1)²+√2*(-1)]
=4-2(1-√2)
=2-2√2
所以最小值为2-2√2
=cos(2x-π/2)+2√2cos(π/4+x)+3
=1-2sin²(x-π/4)-2√2sin(x-π/4)+3
=4-2[sin²(x-π/4)+√2sin(x-π/4)]
令sin(x-π/4)=t,则-1≤t≤1于是
y=4-2(t²+√2t)
y=4-2(t²+√2t+1/2)+2*1/2
=4-2(t-√2/2)²+1
=5-2(t-√2/2)² (-1≤t≤1)
当t=-1时,函数取得最小值
4-2[(-1)²+√2*(-1)]
=4-2(1-√2)
=2-2√2
所以最小值为2-2√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询