高一数学!!!!!急!!!!!
2个回答
展开全部
f(x)=sin(2x+π/6)+sin(2x-π/6)+2cos²x
=sin2xcosπ/6+sinπ/6cos2x+sin2xcosπ/6-sinπ/6cos2x+2cos²x
=2sin2xcosπ/6+2cos²x
=√3sin2x+cos2x+1
=2sin(2x+π/6)+1
∴当2x+π/6=2kπ+π/2即x=kπ+π/6,k∈Z时,f(x)的最大值是3
(2)
由2x+π/6∈[2kπ-π/2,2kπ+π/2],k∈Z可知:单增区间是
[kπ-π/3,kπ+π/6],k∈Z
=sin2xcosπ/6+sinπ/6cos2x+sin2xcosπ/6-sinπ/6cos2x+2cos²x
=2sin2xcosπ/6+2cos²x
=√3sin2x+cos2x+1
=2sin(2x+π/6)+1
∴当2x+π/6=2kπ+π/2即x=kπ+π/6,k∈Z时,f(x)的最大值是3
(2)
由2x+π/6∈[2kπ-π/2,2kπ+π/2],k∈Z可知:单增区间是
[kπ-π/3,kπ+π/6],k∈Z
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询