已知:二次函数y=x2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-3,0),与y轴交于

点C,点D(-2,3)在抛物线上。(3)点G为抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E... 点C,点D(-2,3)在抛物线上。(3)点G为抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由。 展开
 我来答
岭下人民
2013-12-15 · TA获得超过22.8万个赞
知道小有建树答主
回答量:3.5万
采纳率:97%
帮助的人:2226万
展开全部
1. 将A(-3,0)和D(-2,-3)代入函数方程
0=9-3b+c 3b-c=9 (1)
-3=4-2b+c 2b-c=7 (2)
(1)-(2) b=2
代入(2) c=-3
所以解析式为y=x²+2x-3
2. 对称轴x=-1
则IPAI+IPDI的最小值是A(-3, 0)关于x=-1的对称点B(1,0)与D点的连线
A'D与对称轴的交点即为P点
所以最小值=√[(1+2)²+(0+3)²]=3√2
3. 如果存在E,设E(t,0)
则BDIIEG
斜率相等, 即k=(0+3)/(1+2)=1
所以EG的方程为y=x-t
则可设G(m, m-t)
EG²=(m-t)²+(m-t)²=2(m-t)²
BD²=(0+3)²+(1+2)²=18
因EG=BD 所以(m-t)²=9
从图可知,G在第一象限,所以m>0
所以m-t=3 (1)
又G在抛物线上,所以m-t=m²+2m-3
(1)代入得 m²+2m-6=0
m=-1-√7(舍去)或m=-1+√7
代入(1) t=-4+√7
所以E(-4+√7, 0)
追问
第三小题不止一种答案啊 而且斜率什么的我都还没学过
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式