设5元齐次线性方程组AX=0,如果r(A)=1,则其基础解系含有解向量的个数为 A 1 B 2 C 3 D 4

选哪个哦。。。~~~~(>_<)~~~~,,拜托各位大虾。。。... 选哪个哦。。。~~~~(>_<)~~~~ ,,拜托各位大虾。。。 展开
娱乐我知晓哟

2020-07-08 · 专注各种娱乐,欢迎一起探讨
娱乐我知晓哟
采纳数:1346 获赞数:1000264

向TA提问 私信TA
展开全部

D、4。

基础解系的向量个数为n-r(A)=5-1=4

基础解系需要满足三个条件:

(1)基础解系中所有量均是方程组的解;

(2)基础解系线性无关,即基础解系中任何一个量都不能被其余量表示;

(3)方程组的任意解均可由基础解系线性表出,即方程组的所有解都可以用基础解系的量来表示。值得注意的是:基础解系不是唯一的,因个人计算时对自由未知量的取法而异。

扩展资料

解向量是线性方程组的一个解。因为一组解在空间几何里可以表示为一个向量,所以叫做解向量。解向量在矩阵和线性方程组中是常用概念。如果n元齐次线性方程组Ax=0的系数矩阵的秩R(A)=r<n,则解空间S的基础解系存在,且每个基础解系恰有n-r个解向量。

解向量是线性方程组的一个解。因为一组解在空间几何里可以表示为一个向量,所以叫做解向量。解向量在矩阵和线性方程组中是常用概念。

轮看殊O
高粉答主

2021-07-17 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:726万
展开全部

基础解系的向量个数为n-r(A)=5-1=4

首先利用齐次线性方程组解空间维数定理得到ax=0的基础解系所含向量个数;再利用非齐次方程组的两个解的差是导出组的一个解,得到ax=0的一个基础解系的解向量;

而ax=b的通解结构为(ax=b的一个解)+(ax=0的一个基础解系的向量的线性组合)

求解步骤

1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵

2、若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;

若r(A)=r<n(未知量的个数),则原方程组有非零解,进行以下步骤:

3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;

4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
arongustc
科技发烧友

2013-12-29 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:2.3万
采纳率:66%
帮助的人:5874万
展开全部
基础解系的向量个数为n-r(A)=5-1=4
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式