曲线方程怎么算?有什么步骤?
4个回答
2013-11-29
展开全部
看是什么样的曲线了 一次的 两次的 还是三次的 或者是三角函数,对数,还是指数都不是样的
什么叫几个步骤
一般就是 先将已知条件代入 然后解联立方程 解出系数就可以的
谢谢请给我一个好评
什么叫几个步骤
一般就是 先将已知条件代入 然后解联立方程 解出系数就可以的
谢谢请给我一个好评
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
2013-11-29
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-11-29
展开全部
你再问我!!我什么都不会说的!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-11-29
展开全部
定义在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:
(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点。
那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线。
2求解步骤求曲线方程的步骤如下:
(1)建立适当的坐标系;
(2)用坐标(x,y)表示曲线上的任意一点;
(3)由题设条件列出符合条件的关系词f(x,y)=0;
(4)化简(3)中所列出的方程式;
(5)验证(审查)所得到的曲线方程是否保证纯粹性和完备性。
这五个步骤可简称为:建系、设点、列式、化简、验证
3求解方法①直接法
②定义法
③相关点法
④向量
完备每个方法
4等式性质基本性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式。则:
(1)a+c=b+c
(2)a-c=b-c
基本性质2:等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。
(3)若a=b,则b=a(等式的对称性)。
(4)若a=b,b=c则a=c(等式的传递性)。
5方程方程的定义
含有未知数的等式叫方程。
方程的分类
方程可分为:整式方程和分式方程。
整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。
分式方程:分母中含有未知数的方程叫做分式方程。
方程的相关术语
方程的解:使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
解方程的依据:1.移项; 2.等式的基本性质; 3.合并同类项; 4. 加减乘除各部分间的关系。
解方程的步骤:1.能计算的先计算; 2.转化——计算——结果
例如: 3x=5*6
3x=30
x=30/3
x=10
移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。
(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点。
那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线。
2求解步骤求曲线方程的步骤如下:
(1)建立适当的坐标系;
(2)用坐标(x,y)表示曲线上的任意一点;
(3)由题设条件列出符合条件的关系词f(x,y)=0;
(4)化简(3)中所列出的方程式;
(5)验证(审查)所得到的曲线方程是否保证纯粹性和完备性。
这五个步骤可简称为:建系、设点、列式、化简、验证
3求解方法①直接法
②定义法
③相关点法
④向量
完备每个方法
4等式性质基本性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式。则:
(1)a+c=b+c
(2)a-c=b-c
基本性质2:等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。
(3)若a=b,则b=a(等式的对称性)。
(4)若a=b,b=c则a=c(等式的传递性)。
5方程方程的定义
含有未知数的等式叫方程。
方程的分类
方程可分为:整式方程和分式方程。
整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。
分式方程:分母中含有未知数的方程叫做分式方程。
方程的相关术语
方程的解:使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
解方程的依据:1.移项; 2.等式的基本性质; 3.合并同类项; 4. 加减乘除各部分间的关系。
解方程的步骤:1.能计算的先计算; 2.转化——计算——结果
例如: 3x=5*6
3x=30
x=30/3
x=10
移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询