高中排列组合。将三个相同小球放到四个盒子中,求三个小球放在不同盒子中的概

这里出现了两种解法:解法一,第一个小球任意放入一个盒子里面。概率为1第二个小球本可以任意放入一个盒子里面,但是由于不能和第一个小球重复,因此只能选择剩下的3个。概率为3/... 这里出现了两种解法:
解法一,第一个小球任意放入一个盒子里面。概率为1
第二个小球本可以任意放入一个盒子里面,但是由于不能和第一个小球重复,因此只能选择剩下的3个。概率为3/4。
第三个小球,和第二个小球的道理一样,这时只能在4个里面放入剩下的两个空盒才行。概率为2/4=1/2
由于为分步处理,用乘法原理得:P=1×3/4×1/2=3/8

解法二,三个小球放入4个盒子中的情况可分为三种:
1,三个小球放在一起。这样的话就只有一组,有四个可选的盒子,因此有四种选法。
2,三个小球中有两个在一起,一个独立。这样小球就分为两个不同组。放到4个盒子中的两个。有A²₄=12种放法。
3,三个小球分开放,放到四个盒子中。有C³₄=4种放法。
因此共有20种放法,其中满足条件的3共有4种。概率为4/20=1/5

看似两种方法都有道理,不过答案相差太大了。第一种方法是我的算法。第二种是所谓的“标准答案”,我一直抱以怀疑。但是到目前为止我还没有明确地指出其中一种方法的错误。不过我的突破口是第二种方法的每一个基本事件的概率可能不同,如果是这样的话就不能用目标事件数÷总事件数来求解,但是我没证出来。纠结!求大神解答,能详细正确地解答的必有重赏。
展开
 我来答
miniappL6NK2PxHsWPig
2013-12-11 · TA获得超过5005个赞
知道大有可为答主
回答量:1202
采纳率:94%
帮助的人:600万
展开全部
首先告诉你,对于你这类问题,概率方法和排列组合方法的本质是一样的。最终的概率,都是目标方案数,占总方案数的比例。
另外,你说你觉得方法二中的基本事件不是等概率事件。那么我告诉你:
  与你的方法一相比而言,方法二确实不是等概率事件;但与方法二相比,你的方法一却有重复计数了——也就是你的反而不是等概率事件了。不过,最终还是标准答案是正确的。关键就在于【三个小球是相同的】。

你仔细想想,你的方法是不是把三个小球当作不同的来处理了。我前面说过,你的方法其实也是在用排列组合,只不过你没有把所求的方案数写出来,而是直接得出比例的。下面仔细分析:
  所谓【三个小球放在不同盒子】,也就是【每个盒子最多只有一个小球】——条件;
(1)第一个小球任意放,概率为1;因为概率的本质就是:满足条件的放球方法数,占任意放球方法数的比例。此时,任意的放球方法有4种;而由于只有一个球,所以这4种方法都满足条件。所以才有你的概率:
  4÷4=1;
(2)第二个小球只能放到剩下的3个盒子中,概率为3/4;本质就是:任意放球方法还是4中;而满足条件的只有3种。所以:
  3÷4=3/4;
(3)第三个小球只能放到剩下的2个盒子中,概率为1/2;本质就是:任意放球方法仍然是4种;满足条件的只有2种,所以:
  2÷4=1/2;
现在明白了吧?你所谓的3/8其实是这么来的:
  (4×3×2)÷(4×4×4)=3/8;
显然,这个分母就是3个【不同小球】放到4个不同的盒子中的方案数。
更多追问追答
追问
您好!     这里我很明确地跟你说,不论这三个小球是否一样,都不会影响最终的答案。道理很简单,小球的相同与否的确有待考虑,但是结合问题,我们关注的事件对象是小球的位置关系,而与小球的性质是否一样无关,也就是说不论我拿三个相同小球或者三个完全不同但又客观存在的物质来做相同的实验,难道三个东西不放在一起的概率会不一样?    具体观点请看我对你的【评论】
追答
  你说的都很对,看来你已经想得很深了。虽然不少概率问题确实可转化为排列组合问题,但终究事件才是概率所关心的对象。所以关键还在问题的定义上:

你所求的概率是针对这个问题的:
  把3个(相同或不相同的)小球往4个盒子中随机放置,问【放置出的结果中三个球各占一个盒子】的概率。

而我和“标准答案”所求的,其实是下面这个概率:
  在【用4个盒子盛放3个相同小球】的全部方案之中任选一个,问【该方案满足三个球各占一个盒子】的概率。

  二者区别在于:前者所做的是【放球】这一随机试验;后者做的是【选择放置方法】这一随机试验。你再审一下原题,如果你能确定题目所问的就是第一类问题——现在想想,你这类问题确实比我之前所想的第二类问题更自然、更常见,那么你就不用怀疑自己的答案了。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式