
求解答给好评。高一数学
3个回答
展开全部
A+B+C=π 即证明在三角形ABC中 有sinA+sinB+sinC=4cosA/2*cosB/2*cosC/2
证明过程:
4cos(A/2)cos(B/2)cos(C/2)=4cos(A/2)cos(B/2)cos(pi/2-A/2-B/2)=4cos(A/2)cos(B/2)sin(A/2+B/2)=4cos(A/2)cos(B/2)(sin(A/2)cos(B/2)+sin(B/2)cos(A/2))=2sinAcos(B/2)^2+2sinBcos(A/2)^2==>4cos(A/2)cos(B/2)cos(C/2)-sinA-sinB=sinA(2cos(B/2)^2-1)+sinB(2cos(A/2)^2-1)=sinAcosB+sinBcosA=sin(A+B)=sin(pi-A-B)=sin(A+B)==>sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)
证明过程:
4cos(A/2)cos(B/2)cos(C/2)=4cos(A/2)cos(B/2)cos(pi/2-A/2-B/2)=4cos(A/2)cos(B/2)sin(A/2+B/2)=4cos(A/2)cos(B/2)(sin(A/2)cos(B/2)+sin(B/2)cos(A/2))=2sinAcos(B/2)^2+2sinBcos(A/2)^2==>4cos(A/2)cos(B/2)cos(C/2)-sinA-sinB=sinA(2cos(B/2)^2-1)+sinB(2cos(A/2)^2-1)=sinAcosB+sinBcosA=sin(A+B)=sin(pi-A-B)=sin(A+B)==>sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
题目呢。。。?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询