向量平行和垂直的公式都是什么着
8个回答
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部
1、向量垂直公式
向量a=(a1,a2),向量b=(b1,b2)
a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb(λ是一个常数)
a垂直b:a1b1+a2b2=0
2、向量平行公式
向量a=(x1,y1),向量b=(x2,y2)
x1y2-x2y1=0
a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0
扩展资料
向量的表达方式
1、代数表示
一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,也可以用大写字母AB、CD上加一箭头(→)等表示。
2、几何表示
向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对于向量a和向量b,我们可以使用内积(点积)来判断它们是否平行或垂直。
1. 平行:如果两个向量a和b平行,它们的内积(点积)为0。即有 a · b = 0。
2. 垂直:如果两个向量a和b垂直,它们的内积(点积)为零。即有 a · b = 0。
注意,上述定义适用于二维和三维向量。在更高维度的情况下,平行和垂直的定义稍有不同。
对于平行向量,它们具有相同或相反的方向。如果向量a和向量b平行,则存在一个非零实数k,使得向量a = k * 向量b。
对于垂直向量,在三维空间中,它们的夹角为90度,点积为零。在二维空间中,垂直向量的点积也为零,但在更高维度的空间中,垂直向量的定义稍有不同,需要使用更一般的概念。
总结:
1. 向量a和向量b平行的条件:a · b = 0
2. 向量a和向量b垂直的条件:a · b = 0
其中,a · b表示向量a和向量b的点积(内积)。
1. 平行:如果两个向量a和b平行,它们的内积(点积)为0。即有 a · b = 0。
2. 垂直:如果两个向量a和b垂直,它们的内积(点积)为零。即有 a · b = 0。
注意,上述定义适用于二维和三维向量。在更高维度的情况下,平行和垂直的定义稍有不同。
对于平行向量,它们具有相同或相反的方向。如果向量a和向量b平行,则存在一个非零实数k,使得向量a = k * 向量b。
对于垂直向量,在三维空间中,它们的夹角为90度,点积为零。在二维空间中,垂直向量的点积也为零,但在更高维度的空间中,垂直向量的定义稍有不同,需要使用更一般的概念。
总结:
1. 向量a和向量b平行的条件:a · b = 0
2. 向量a和向量b垂直的条件:a · b = 0
其中,a · b表示向量a和向量b的点积(内积)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐于2017-11-26
展开全部
平面向量平行对应坐标交叉相乘相等,即x1y2=x2y1
垂直是内积为0
垂直是内积为0
追问
垂直的没懂
追答
x1x2+y1y2=0
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
向量平行的判断公式:
如果两个向量 u = (u1, u2, u3) 和 v = (v1, v2, v3) 平行,那么它们的对应分量满足比例关系 u1/v1 = u2/v2 = u3/v3。
向量垂直的判断公式:
如果两个向量 u = (u1, u2, u3) 和 v = (v1, v2, v3) 垂直,那么它们的点积(内积)为零,即 u·v = u1v1 + u2v2 + u3v3 = 0。
如果两个向量 u = (u1, u2, u3) 和 v = (v1, v2, v3) 平行,那么它们的对应分量满足比例关系 u1/v1 = u2/v2 = u3/v3。
向量垂直的判断公式:
如果两个向量 u = (u1, u2, u3) 和 v = (v1, v2, v3) 垂直,那么它们的点积(内积)为零,即 u·v = u1v1 + u2v2 + u3v3 = 0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询