已知二次函数f(x)=ax∧2+bx+c(c>0且为常数)的导函数的图象如图所示(就是过(0,1)

已知二次函数f(x)=ax∧2+bx+c(c>0且为常数)的导函数的图象如图所示(就是过(0,1)和(-1/2,0)的直线)(1)求函数f(x)的解析式(用含c的式子表示... 已知二次函数f(x)=ax∧2+bx+c(c>0且为常数)的导函数的图象如图所示(就是过(0,1)和(-1/2,0)的直线) (1)求函数f(x)的解析式(用含c的式子表示) (2)另g(x)=f(x)/x,求y=g(x)在[1,2]上的最大值 展开
百度网友c50e091
2014-08-17 · TA获得超过4714个赞
知道小有建树答主
回答量:2781
采纳率:58%
帮助的人:354万
展开全部
(1)由图可知导函数为y=2x+1
所以f‘(x)=2ax+b=2x+1
a=1,b=1
f(x)=x∧2+x+c
freebetty_lin
2014-08-17 · TA获得超过104个赞
知道答主
回答量:38
采纳率:0%
帮助的人:26万
展开全部
1)因为f(x)=ax∧2+bx+c(c>0且为常数)的导函数为f'(x)=2ax+b,所以这条直线过(0,1)和(-1/2,0)这两点,所以
b=1,a=1,所以f(x)=x∧2+x+c
2)因为g(x)=f(x)/x=x+c/x+1,为一个对勾函数,因为c>0且为常数,
所以函数在(0,√c]上减,在[√c,﹢∞)上增,
所以要分类讨论,当c≦1时g(x)在[1,2]上增,所以最大值为g(2)=3+c/2,
当c≥4时所以g(x)在[1,2]上减,所以最大值为g(1)=2+c
当1<c<4时,g(x)在[1,√c]上减,在[√c,2]上增所以最大值为g(1)或g(2)
因为g(2)-g(1)=1-c/2,所以当它大于0时,c<2,当它小于0时,2<c
所以综上所述,g(x)的最大值①=3+c/2,c∈(0,2],②=2+c,c∈(2,﹢∞)
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式