初三数学题 急求!! 如图,在三角形ABC中,BD,CE分别是角ABC与角ACB的角平分线,A
初三数学题急求!!如图,在三角形ABC中,BD,CE分别是角ABC与角ACB的角平分线,AF垂直CE于点F,AG垂直BD于点G,连接FG《1》求证FG平行BC《2》若把两...
初三数学题 急求!! 如图,在三角形ABC中,BD,CE分别是角ABC与角ACB的角平分线,AF垂直CE于点F,AG垂直BD于点G,连接FG 《1》求证 FG平行BC 《2》若把两内角平分线换成两外角平分线,其他条件不变,上述结论是否成立,请说明理由 《3》若把两内角平分线换成一内角一外角平分线,其他条件不变,上述结论是否成立,说明理由。
展开
2个回答
展开全部
1、设AG、AF的延长线分别交BC于M、N,
因为BD是内角平分线
所以∠ABF=∠NBF
因为AF⊥BD
所以∠AFB=∠NBF=90°
又因为BF=BF
所以△ABF≌△NBF
所以AF=NF,AB=BN
同理可证AG=MG,AC=CM
所以FG是△AMN的中位线
所以FG=MN/2
因为MN=BC-BM-CN
即MN=BC-(BN-MN)-(CM-MN)
整理得:MN=AB+AC-BC
所以FG=(AB+AC-BC)/2
2、
本题中F、N点与上题一样
同样有F是AN中点,AB=BN
另外通过全等三角形同样可证明:
G是AM的中点,AC=CM
因为CE为ABC的外角平分线
所以与上题的区别是M在BC的延长线上
此时MN=BC+CM-BN=BC+AC-AB
所以FG=(BC+AC-AB)/2
因为BD是内角平分线
所以∠ABF=∠NBF
因为AF⊥BD
所以∠AFB=∠NBF=90°
又因为BF=BF
所以△ABF≌△NBF
所以AF=NF,AB=BN
同理可证AG=MG,AC=CM
所以FG是△AMN的中位线
所以FG=MN/2
因为MN=BC-BM-CN
即MN=BC-(BN-MN)-(CM-MN)
整理得:MN=AB+AC-BC
所以FG=(AB+AC-BC)/2
2、
本题中F、N点与上题一样
同样有F是AN中点,AB=BN
另外通过全等三角形同样可证明:
G是AM的中点,AC=CM
因为CE为ABC的外角平分线
所以与上题的区别是M在BC的延长线上
此时MN=BC+CM-BN=BC+AC-AB
所以FG=(BC+AC-AB)/2
更多追问追答
追问
三问都是证明平行的 好像不对吧
追答
看错了,
设AG、AF的延长线分别交BC于M、N,
因为BD是内角平分线
所以∠ABF=∠NBF
因为AF⊥BD
所以∠AFB=∠NBF=90°
又因为BF=BF
所以△ABF≌△NBF
所以AF=NF,AB=BN
同理可证AG=MG,AC=CM
所以FG是△AMN的中位线
所以FG//BC
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |