已知实数a、b、c满足a+b+c=0,a2+b2+c2=6,则a的最大值为______.
∵a+b+c=0,∴c=-(a+b),∴a2+b2+[-(a+b)]2=6,∴b2+ab+(a2-3)=0,∴△=a2-4(a2-3)=-3a2+12≥0,解得,-2≤a...
∵a+b+c=0,
∴c=-(a+b),
∴a2+b2+[-(a+b)]2=6,
∴b2+ab+(a2-3)=0,
∴△=a2-4(a2-3)=-3a2+12≥0,
解得,-2≤a≤2,
∴a的最大值为2.
故答案为:2.
其中△ 为什么要>=0 展开
∴c=-(a+b),
∴a2+b2+[-(a+b)]2=6,
∴b2+ab+(a2-3)=0,
∴△=a2-4(a2-3)=-3a2+12≥0,
解得,-2≤a≤2,
∴a的最大值为2.
故答案为:2.
其中△ 为什么要>=0 展开
3个回答
展开全部
因为b为实数,所以关于b的二次方程判别式不小于0。
其他解法(Cauchy):
b^2+c^2≥(1/2)·(b+c)^2
→6-a^2≥(1/2)·(-a)^2
→12-2a^2≥a^2
→-2≤a≤2.
∴a最大值为:2。
另外,还可看成关于b、c的直线b+c+a=0,与圆b^2+c^2=6-a^2的圆心(0,0)距离小于半径√(6-a^2),
∴|a|/√2≤√(6-a^2)
→a^2≤2(6-a^2)
→-2≤a≤2.
∴a最大值为:2。
其他解法(Cauchy):
b^2+c^2≥(1/2)·(b+c)^2
→6-a^2≥(1/2)·(-a)^2
→12-2a^2≥a^2
→-2≤a≤2.
∴a最大值为:2。
另外,还可看成关于b、c的直线b+c+a=0,与圆b^2+c^2=6-a^2的圆心(0,0)距离小于半径√(6-a^2),
∴|a|/√2≤√(6-a^2)
→a^2≤2(6-a^2)
→-2≤a≤2.
∴a最大值为:2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
它的意思是分离变量,就是说这里的b与所求无关,当变量处理,以变量b建立一个函数,然後让a成为构成函数的一部份从而限制a的范围,能懂吗?接著就建立了一个有关变量b的二次函数,因为b2+ab+(a2-3)=0是有实根的,就是说函数与X轴有至少一个交点,那就要保证△ >=0,而且这里b的范围没有限定,所以是可以用判别式的。明白?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询