(人教版)已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙

(人教版)已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E.(1)如图①,若点P在线段O... (人教版)已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E.(1)如图①,若点P在线段OA上,求证:∠OBP+∠AQE=45°;(2)若点P在线段OA的延长线上,其它条件不变,∠OBP与∠AQE之间是否存在某种确定的等量关系?请你完成图②,并写出结论(不需要证明). 展开
 我来答
淡忘来了0385
推荐于2016-12-01 · 超过72用户采纳过TA的回答
知道答主
回答量:149
采纳率:33%
帮助的人:68.1万
展开全部
(1)证明:如图①,连接OQ,
∵OB=OQ,
∴∠OBP=∠OQB,
∵OA⊥OB,
∴∠BQA=
1
2
∠AOB=
1
2
×90°=45°,
∵EQ是切线,
∴∠OQE=90°,
∴∠OBP+∠AQE=∠OQB+∠AQE=90°-∠BQA=90°-45°=45°;

(2)如图②,连接OQ,
∵OB=OQ,
∴∠OBQ=∠OQB,
∵OA⊥OB,
∴∠BQA=
1
2
×(360°-90°)=135°,
∴∠OQA=∠BQA-∠OQB=135°-∠OBQ,
∵EQ是切线,
∴∠OQE=90°,
∴135°-∠OBQ+∠AQE=90°,
整理得,∠OBQ-∠AQE=45°,
即∠OBP-∠AQE=45°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式