如图,在△ABC中,AB=AC,⊙O是△ABC的内切圆,它与AB,BC,CA分别相切于点D、E、F.(1)求证:BE=CE;
如图,在△ABC中,AB=AC,⊙O是△ABC的内切圆,它与AB,BC,CA分别相切于点D、E、F.(1)求证:BE=CE;(2)若∠A=90°,AB=AC=2,求⊙O的...
如图,在△ABC中,AB=AC,⊙O是△ABC的内切圆,它与AB,BC,CA分别相切于点D、E、F.(1)求证:BE=CE;(2)若∠A=90°,AB=AC=2,求⊙O的半径.
展开
展开全部
解法一:(1)证明:∵⊙O是△ABC的内切圆,切点为D、E、F
∴AD=AF,BD=BE,CE=CF,
∵AB=AC,
∴AB-AD=AC-AF,
即BD=CF,
∴BE=CE;
解法二:(1)证明:连结OB、OC、OE
∵⊙O是△ABC的内切圆,
∴OB,OC分别平分∠ABC,∠ACB,
∴∠OBC=
∠ABC,∠OCB=
∠ACB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠OBC=∠OCB,
∴OB=OC,
又∵⊙O是△ABC的内切圆,切点为E,
∴OE⊥BC,
∴BE=CE;
(2)解:连结OD、OE,
∵⊙O是△ABC的内切圆,切点为D、E、F,
∴∠ODA=∠OFA=∠A=90°,
又∵OD=OF,
∴四边形ODAF是正方形,
设OD=AD=AF=r,
则BE=BD=CF=CE=2-r,
在△ABC中,∠A=90°,
∴BC=
=2
,
又∵BC=BE+CE,
∴(2-r)+(2-r)=2
,
得:r=2?
,
∴⊙O的半径是2?
.
∴AD=AF,BD=BE,CE=CF,
∵AB=AC,
∴AB-AD=AC-AF,
即BD=CF,
∴BE=CE;
解法二:(1)证明:连结OB、OC、OE
∵⊙O是△ABC的内切圆,
∴OB,OC分别平分∠ABC,∠ACB,
∴∠OBC=
1 |
2 |
1 |
2 |
∵AB=AC,
∴∠ABC=∠ACB,
∴∠OBC=∠OCB,
∴OB=OC,
又∵⊙O是△ABC的内切圆,切点为E,
∴OE⊥BC,
∴BE=CE;
(2)解:连结OD、OE,
∵⊙O是△ABC的内切圆,切点为D、E、F,
∴∠ODA=∠OFA=∠A=90°,
又∵OD=OF,
∴四边形ODAF是正方形,
设OD=AD=AF=r,
则BE=BD=CF=CE=2-r,
在△ABC中,∠A=90°,
∴BC=
AB2+AC2 |
2 |
又∵BC=BE+CE,
∴(2-r)+(2-r)=2
2 |
得:r=2?
2 |
∴⊙O的半径是2?
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询