已知函数f(x)=x3-x(1)求曲线y=f(x)在点M(t,f(t))处的切线方程(2)设a>0,如果过点(a,b)

已知函数f(x)=x3-x(1)求曲线y=f(x)在点M(t,f(t))处的切线方程(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:-a<b<f(... 已知函数f(x)=x3-x(1)求曲线y=f(x)在点M(t,f(t))处的切线方程(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:-a<b<f(a) 展开
 我来答
血刺啊晖恒x
2014-09-28 · 超过61用户采纳过TA的回答
知道答主
回答量:131
采纳率:0%
帮助的人:120万
展开全部
(1)求函数f(x)的导函数;f'(x)=3x2-1.
曲线y=f(x)在点M(t,f(t))处的切线方程为:y-f(t)=f'(t)(x-t),即y=(3t2-1)x-2t3
(2)如果有一条切线过点(a,b),则存在t,使b=(3t2-1)a-2t3
于是,若过点(a,b)可作曲线y=f(x)的三条切线,则方程2t3-3at2+a+b=0有三个相异的实数根.
记g(t)=2t3-3at2+a+b,则g'(t)=6t2-6at=6t(t-a).
当t变化时,g(t),g'(t)变化情况如下表:

由g(t)的单调性,当极大值a+b<0或极小值b-f(a)>0时,方程g(t)=0最多有一个实数根;
当a+b=0时,解方程g(t)=0得t=0,t=
3a
2
,即方程g(t)=0只有两个相异的实数根;
当b-f(a)=0时,解方程g(t)=0得t=?
a
2
,t=a
,即方程g(t)=0只有两个相异的实数根.
综上,如果过(a,b)可作曲线y=f(x)三条切线,即g(t)=0有三个相异的实数根,则
a+b>0
b?f(a)<0.

即-a<b<f(a).
茹翊神谕者

2022-04-19 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1526万
展开全部

简单计算一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式