给出下列四个命题:①“直线a、b为异面直线”的充分非必要条件是“直线a、b不相交”.②“直线l⊥平面α
给出下列四个命题:①“直线a、b为异面直线”的充分非必要条件是“直线a、b不相交”.②“直线l⊥平面α内的所有直线”的充要条件是“l⊥α”.③“直线a⊥b”的充分非必要条...
给出下列四个命题:①“直线a、b为异面直线”的充分非必要条件是“直线a、b不相交”.②“直线l⊥平面α内的所有直线”的充要条件是“l⊥α”.③“直线a⊥b”的充分非必要条件是“a垂直于b在平面α内的射影”.④设α⊥β,a?β,则“a ∥ β”的充分非必要条件是“a⊥α”.其中正确命题的序号是( ) A.①③ B.②③ C.②④ D.②③④
展开
1个回答
展开全部
对于①,若“直线a、b为异面直线”必定有“直线a、b不相交”,
反过来,若“直线a、b不相交”则“直线a、b为异面直线或平行直线”,
因此应该是必要非充分条件,故①不正确;
对应②,线面垂直的定义:如果一条直线垂直于一个平面内的所有直线,
就称这条直线与这个平面垂直.
根据这个定义可得“直线l⊥平面α内的所有直线”的充要条件是“l⊥α”,故②正确;
对于③,若“a垂直于b在平面α内的射影”不一定推出“直线a⊥b”,因为a不一定在平面α内,
反之,若“直线a⊥b,且a在平面α内”则必有“a垂直于b在平面α内的射影”,但a仍然不一定在平面α内,
说明是既不充分也不必要条件,故③不正确;
对于④,若“a⊥α”结合大前提“β⊥α”,说明“a ∥ β或a?β”成立,
而题意中有“a?β”,说明只有“a ∥ β”,由此得充分性成立.
反之,若“α⊥β,a?β”且“a ∥ β”有可能a平行于α、β的交线,不能得到“a⊥α”,没有必要性
说明“a ∥ β”的充分非必要条件是“a⊥α”成立,故④正确.
故选C
反过来,若“直线a、b不相交”则“直线a、b为异面直线或平行直线”,
因此应该是必要非充分条件,故①不正确;
对应②,线面垂直的定义:如果一条直线垂直于一个平面内的所有直线,
就称这条直线与这个平面垂直.
根据这个定义可得“直线l⊥平面α内的所有直线”的充要条件是“l⊥α”,故②正确;
对于③,若“a垂直于b在平面α内的射影”不一定推出“直线a⊥b”,因为a不一定在平面α内,
反之,若“直线a⊥b,且a在平面α内”则必有“a垂直于b在平面α内的射影”,但a仍然不一定在平面α内,
说明是既不充分也不必要条件,故③不正确;
对于④,若“a⊥α”结合大前提“β⊥α”,说明“a ∥ β或a?β”成立,
而题意中有“a?β”,说明只有“a ∥ β”,由此得充分性成立.
反之,若“α⊥β,a?β”且“a ∥ β”有可能a平行于α、β的交线,不能得到“a⊥α”,没有必要性
说明“a ∥ β”的充分非必要条件是“a⊥α”成立,故④正确.
故选C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询