已知二次函数f(x)=x2+2bx+c(b,c∈R)满足f(1)=0,且关于x的方程f(x)+x+b=0的两实数根分别在区间

已知二次函数f(x)=x2+2bx+c(b,c∈R)满足f(1)=0,且关于x的方程f(x)+x+b=0的两实数根分别在区间(-3,-2),(0,1)内.(1)求实数b的... 已知二次函数f(x)=x2+2bx+c(b,c∈R)满足f(1)=0,且关于x的方程f(x)+x+b=0的两实数根分别在区间(-3,-2),(0,1)内.(1)求实数b的取值范围;(2)若函数F(x)=logbf(x)在区间(-1-c,1-c)上具有单调性,求实数c的取值范围. 展开
 我来答
舒爽又朴素灬丁香861
2014-12-11 · TA获得超过124个赞
知道答主
回答量:102
采纳率:0%
帮助的人:133万
展开全部
(1)由题意知f(1)=1+2b+c=0,
∴c=-1-2b
记g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)x-b-1
则g(-3)=5-7b>0
g(-2)=1-5b<0∴
1
5
<b<
5
7

g(0)=-1-b<0
g(1)=b+1>0  即b∈(
1
5
5
7
).(7分)
(2)令u=f(x).∵0<
1
5
<b<
5
7
<1

∴logbu在(0,+∞)是减函数
而-1-c=2b>-b,函数f(x)=x2+2bx+c的对称轴为x=-b
∴f(x)在区间(-1-c,1-c)上为增函数,
从而F(x)=logbf(x)在(-1-c,1-c)上为减函数
且f(x)在区间(-1-c,1-c)上恒有f(x)>0,
只需f(-1-c)≥0,
且c=-2b-1  (
1
5
<b<
5
7
) 所以?
17
7
<c≤?2
.(13分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式