已知二次函数f(x)=x2+2bx+c(b,c∈R)满足f(1)=0,且关于x的方程f(x)+x+b=0的两实数根分别在区间
已知二次函数f(x)=x2+2bx+c(b,c∈R)满足f(1)=0,且关于x的方程f(x)+x+b=0的两实数根分别在区间(-3,-2),(0,1)内.(1)求实数b的...
已知二次函数f(x)=x2+2bx+c(b,c∈R)满足f(1)=0,且关于x的方程f(x)+x+b=0的两实数根分别在区间(-3,-2),(0,1)内.(1)求实数b的取值范围;(2)若函数F(x)=logbf(x)在区间(-1-c,1-c)上具有单调性,求实数c的取值范围.
展开
1个回答
展开全部
(1)由题意知f(1)=1+2b+c=0,
∴c=-1-2b
记g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)x-b-1
则g(-3)=5-7b>0
g(-2)=1-5b<0∴
<b<
g(0)=-1-b<0
g(1)=b+1>0 即b∈(
,
).(7分)
(2)令u=f(x).∵0<
<b<
<1
∴logbu在(0,+∞)是减函数
而-1-c=2b>-b,函数f(x)=x2+2bx+c的对称轴为x=-b
∴f(x)在区间(-1-c,1-c)上为增函数,
从而F(x)=logbf(x)在(-1-c,1-c)上为减函数
且f(x)在区间(-1-c,1-c)上恒有f(x)>0,
只需f(-1-c)≥0,
且c=-2b-1 (
<b<
) 所以?
<c≤?2.(13分)
∴c=-1-2b
记g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)x-b-1
则g(-3)=5-7b>0
g(-2)=1-5b<0∴
1 |
5 |
5 |
7 |
g(0)=-1-b<0
g(1)=b+1>0 即b∈(
1 |
5 |
5 |
7 |
(2)令u=f(x).∵0<
1 |
5 |
5 |
7 |
∴logbu在(0,+∞)是减函数
而-1-c=2b>-b,函数f(x)=x2+2bx+c的对称轴为x=-b
∴f(x)在区间(-1-c,1-c)上为增函数,
从而F(x)=logbf(x)在(-1-c,1-c)上为减函数
且f(x)在区间(-1-c,1-c)上恒有f(x)>0,
只需f(-1-c)≥0,
且c=-2b-1 (
1 |
5 |
5 |
7 |
17 |
7 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询