如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.⑴求证:△ABF≌△ECF⑵若∠AFC=2∠D,

如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.⑴求证:△ABF≌△ECF⑵若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.... 如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.⑴求证:△ABF≌△ECF⑵若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形. 展开
 我来答
intleboy618
2014-10-06 · 超过70用户采纳过TA的回答
知道答主
回答量:134
采纳率:0%
帮助的人:67.7万
展开全部
(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD。∴∠ABF=∠ECF。∵EC=DC,∴AB=EC。在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,∴△ABF≌△ECF
(2)∵AB=EC ,AB∥EC,∴四边形ABEC是平行四边形。∴AF=EF, BF=CF。∵四边形ABCD是平行四边形。
∴∠ABC=∠D。又∵∠AFC=2∠D,∴∠AFC=2∠ABC。 ∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF.∴FA=FB。∴FA=FE=FB=FC,∴AE=BC。∴四边形ABEC是矩形


试题分析:
证明:⑴证明全等三角形,可以采用SSS、SAS、ASA、AAS、直角三角形可用HL,观察图形和审题,可以找到对顶角相等,由于位于平行四边形中,还有内错角相等,对应边相等,由此可找出相应条件证明。
∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD。∴∠ABF=∠ECF。∵EC=DC,∴AB=EC。在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,∴△ABF≌△ECF。
(2)证明四边形是矩形,可以通过证明有一个角是90°的平行四边形,或者证明是对角边互相平分的平行四边形。证明过程如下:
∵AB=EC ,AB∥EC,∴四边形ABEC是平行四边形。∴AF=EF, BF=CF。∵四边形ABCD是平行四边形。
∴∠ABC=∠D。又∵∠AFC=2∠D,∴∠AFC=2∠ABC。 ∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF.∴FA=FB。∴FA=FE=FB=FC,∴AE=BC。∴四边形ABEC是矩形。
点评:该题考查学生对全等三角形和矩形的证明,要熟练掌握相应的判定定理,寻找题中提供的条件,再选择证明方法。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式