已知等差数列{a n }的公差大于0,且a 3 ,a 5 是方程x 2 -14x+45=0的两根,数列{b n }的前n项的和为S n
已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{bn}的前n项的和为Sn,且Sn=1-bn2(n∈N*).(1)求数列{an},{...
已知等差数列{a n }的公差大于0,且a 3 ,a 5 是方程x 2 -14x+45=0的两根,数列{b n }的前n项的和为S n ,且S n = 1 -b n 2 (n∈N * ).(1)求数列{a n },{b n }的通项公式;(2)记c n =a n ?b n ,求证:c n+1 <c n (3)求数列{c n }的前n项和T n .
展开
小羊开1213
2014-11-12
·
超过66用户采纳过TA的回答
关注
(1)∵等差数列{a n }的公差大于0,且a 3 ,a 5 是方程x 2 -14x+45=0的两根, ∴a 3 =5,a 5 =9,∴ d= =2 ∴a n =a 5 +2(n-5)=2n-1 ∵S n = ,∴n≥2时,b n =S n -S n-1 = ,∴ = ∵n=1时,b 1 =S 1 = ,∴b 1 = ∴b n = ? ( ) n-1 = ( ) n ; (2)证明:由(1)知c n =a n ?b n = ∴c n+1 -c n = - = ≤0 ∴c n+1 <c n (3)T n = + +…+ ∴ T n = +…+ + 两式相减可得: T n = + +…+ - = - ? ∴T n = 1- . |
收起
为你推荐: