设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)<0.求证:存在ξ∈(0,1),使得ξf′
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)<0.求证:存在ξ∈(0,1),使得ξf′(ξ)+(2-ξ)f(ξ)=0....
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)<0.求证:存在ξ∈(0,1),使得ξf′(ξ)+(2-ξ)f(ξ)=0.
展开
1个回答
展开全部
令g(x)=x2e-xf(x),则g(x)在[0,1]上连续,在(0,1)内可导,且
g′(x)=xe-x[xf′(x)+(2-x)f(x)].
因为f(0)f(1)<0,
由连续函数的零点存在定理可得,?c∈(0,1)使得f(c)=0,
从而g(c)=0.
又因为g(0)=0,
故对函数g(x)在区间[0,c]上利用罗尔中值定理可得,
存在ξ∈(0,1),使得g′(ξ)=0,
即:ξe-ξ[ξf′(ξ)+(2-ξ)f(ξ)]=0.
又因为ξe-ξ≠0,
故ξf′(ξ)+(2-ξ)f(ξ)=0.
g′(x)=xe-x[xf′(x)+(2-x)f(x)].
因为f(0)f(1)<0,
由连续函数的零点存在定理可得,?c∈(0,1)使得f(c)=0,
从而g(c)=0.
又因为g(0)=0,
故对函数g(x)在区间[0,c]上利用罗尔中值定理可得,
存在ξ∈(0,1),使得g′(ξ)=0,
即:ξe-ξ[ξf′(ξ)+(2-ξ)f(ξ)]=0.
又因为ξe-ξ≠0,
故ξf′(ξ)+(2-ξ)f(ξ)=0.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询