如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC. (1)求证:BC平

如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.(1)求证:BC平分∠PDB;(2)求证:BC2=AB?BD;(3)若P... 如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC. (1)求证:BC平分∠PDB;(2)求证:BC 2 =AB?BD;(3)若PA=6,PC=6 ,求BD的长. 展开
 我来答
岚羽AT02Z
推荐于2016-07-28 · TA获得超过274个赞
知道答主
回答量:125
采纳率:0%
帮助的人:130万
展开全部
解:(1)证明:连接OC,

∵PD为圆O的切线,∴OC⊥PD。
∵BD⊥PD,∴OC∥BD。∴∠OCB=∠CBD。
∵OC=OB,∴∠OCB=∠OBC。
∴∠CBD=∠OBC,即BC平分∠PBD。
(2)证明:连接AC,
∵AB为圆O的直径,∴∠ACB=90°。
∵∠ACB=∠CDB=90°,∠ABC=∠CBD,∴△ABC∽△CBD。
,即BC 2 =AB?BD。
(3)∵PC为圆O的切线,PAB为割线,∴PC 2 =PA?PB,即72=6PB,解得:PB=12。
∴AB=PB-PA=12-6=6。∴OC=3,PO=PA+AO=9。
∵△OCP∽△BDP,∴ ,即
∴BD=4。

(1)连接OC,由PD为圆O的切线,由切线的性质得到OC垂直于PD,由BD垂直于PD,得到OC与BD平行,利用两直线平行得到一对内错角相等,再由OC=OB,利用等边对等角得到一对角相等,等量代换即可得证。
(2)连接AC,由AB为圆O的直径,利用直径所对的圆周角为直角得到△ABC为直角三角形,根据一对直角相等,以及(1)的结论得到一对角相等,确定出△ABC与△BCD相似,由相似得比例,变形即可得证。
(3)由切割线定理列出关系式,将PA,PC的长代入求出PB的长,由PB﹣PA求出AB的长,确定出圆的半径,由OC与BD平行得到△PCO与△DPB相似,由相似得比例,将OC,OP,以及PB的长代入即可求出BD的长。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式