在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.若sinB+sinC=1,求△

在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.若sinB+sinC=1,求△ABC的各角的大小.... 在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.若sinB+sinC=1,求△ABC的各角的大小. 展开
 我来答
印君利tQ
2014-11-17 · 超过59用户采纳过TA的回答
知道答主
回答量:189
采纳率:0%
帮助的人:63.3万
展开全部
解  根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.
由余弦定理得a2=b2+c2-2bccos A,故cos A=-
1
2

又A∈(0,π),故A=
3
.(5分)
由sin2A=sin2B+sin2C+sin Bsin C.
又sin B+sin C=1,得sin B=sin C=
1
2

B=C=
π
6
    (10分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式