已知函数f(x)=(a+1)lnx+ax2+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a≤-2,证明:对任意x1,x2∈

已知函数f(x)=(a+1)lnx+ax2+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a≤-2,证明:对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x... 已知函数f(x)=(a+1)lnx+ax2+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a≤-2,证明:对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|. 展开
 我来答
缪澍0En
推荐于2016-12-01 · TA获得超过196个赞
知道答主
回答量:163
采纳率:50%
帮助的人:114万
展开全部
(Ⅰ)f(x)的定义域为(0,+∞),f′(x)=
a+1
x
+2ax=
2ax2+a+1
x

当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调增加;
当a≤-1时,f′(x)<0,故f(x)在(0,+∞)单调减少;
当-1<a<0时,令f′(x)=0,解得x=
-
a+1
2a
.当x∈(0,
-
a+1
2a
)时,f′(x)>0;
x∈(
-
a+1
2a
,+∞)时,f′(x)<0,
故f(x)在(0,
-
a+1
2a
)单调增加,在(
-
a+1
2a
,+∞)单调减少.
(Ⅱ)不妨假设x1≤x2.由于a≤-2,故f(x)在(0,+∞)单调递减.
所以|f(x1)-f(x2)|≥4|x1-x2|等价于f(x1)-f(x2)≥4x2-4x1
即f(x2)+4x2≤f(x1)+4x1
令g(x)=f(x)+4x,则g′(x)=
a+1
x
+2ax
+4=
2ax2+4x+a+1
x

于是g′(x)≤
-4x2+4x-1
x
=
-(2x-1)2
x
≤0.
从而g(x)在(0,+∞)单调减少,故g(x1)≥g(x2),
即f(x1)+4x1≥f(x2)+4x2,故对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式