设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,求Z=X+Y的概率密度函数

 我来答
Dilraba学长
高粉答主

2019-05-30 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411060

向TA提问 私信TA
展开全部

X,Y相互独立,且都服从[0,1]上的均匀分布 --> f(x,y)=1.

Z=X+Y

F(z)=P(x+y<z) = ∫∫f(x,y)dxdy = ∫∫dxdy =直线x=0,x=1,y=0,y=1,y=-x+z所围面积

当0<z<1时, F(z) = (z^2)/2

当1<z<2时, F(z) = (z^2/2)-(z-1)^2

Z=X+Y的概率密度

f(z) = dF(z)/dz=z      0<z<1;  f(z) = 2-z     1<z<2.

扩展资料

由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。更准确来说,如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。

连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。

茹翊神谕者

2021-01-27 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1647万
展开全部

直接用书上的公式,简单快捷

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
0113我在
推荐于2017-09-04 · TA获得超过1194个赞
知道小有建树答主
回答量:253
采纳率:80%
帮助的人:81.5万
展开全部

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
maths_hjxk
2015-01-17 · 知道合伙人教育行家
maths_hjxk
知道合伙人教育行家
采纳数:9802 获赞数:19413
毕业厦门大学概率论与数理统计专业 硕士学位

向TA提问 私信TA
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xlp0417
2014-12-27 · TA获得超过1.9万个赞
知道大有可为答主
回答量:7213
采纳率:88%
帮助的人:2534万
展开全部
fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx

(1)z<0
fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx=0

(2)0≤z<1
fZ(z)=∫(0→z)1·1dx=z

(3)1≤z<2
fZ(z)=∫(0→z-1)1·0dx+ ∫(z-1→1)1·1dx
=2-z

(4)z≥2时,
fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式