求cos29°的近似值
答案是0.875
设f(x)=cosx
f'(x)=-sinx
f'(30°)=[f(30°)-f(29°)]/(30°-29°)
-sin30°=(cos30°-cos29°)/(π/180)
cos29°=cos30°+sin30°·π/180
=(√3/2) +(1/2)·π/180
≈0.875
cos29°的近似值为0.875
扩展资料
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
2021-01-25 广告
设函数f(x)=cos(x)
则f'(x)=-sin(x)
而cos29可以看作是在x0=30°=πzhi/6rad,增量△x=-1°
=-π/180rad的运算,于是有
cos29°≈f(x0)+f'(x0)△x=cos(π/6)+sin(π/6)×(π/180)=sqrt(3)/2+π/360≈0.8748
扩展资料:
四舍五入法
根据要求,要省略的尾数的最高位上的数字小于或等于4的,就直接把尾数舍去;如果尾数的最高位数大于或等于5,把尾数舍去后并向它的前一位进“1”,即满五进一。这种取近似数的方法叫做四舍五入法。
如:把3.15482分别保留一位、两位、三位小数。
保留一位小数:3.15482≈3.2
保留两位小数:3.15482≈3.15
保留三位小数:3.15482≈3.155