平面向量夹角公式是怎么计算的 上下分别怎么算 细讲

 我来答
帐号已注销
2019-01-05 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.1万
展开全部

平面向量夹角公式:cos=(ab的内积)/(|a||b|)

(1)上部分:a与b的数量积坐标运算:设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2

(2)下部分:是a与b的模的乘积:设a=(x1,y1),b=(x2,y2),则(|a||b|)=根号下(x1平方+y1平方)*根号下(x2平方+y2平方)

正切公式用tan表示,余角公式用cos表示。正切公式(直线的斜率公式):k=(y2-y1)/(x2-x1),余弦公式(直线的斜率公式):k=(y2-y1)/(x2-x1)。

扩展资料:

已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。

用坐标表示时,显然有:AB+BC=(x2-x1,y2-y1)+(x3-x2,y3-y2)=(x2-x1+x3-x2,y2-y1+y3-y2)=(x3-x1,y3-y1)=AC。这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。

A1X+B1Y+C1=0........(1)

A2X+B2Y+C2=0........(2)

则(1)的方向向量为u=(-B1,A1),(2)的方向向量为v=(-B2,A2)

由向量数量积可知,cosφ=u·v/|u||v|,即

两直线夹角公式:cosφ=A1A2+B1B2/[√(A1^2+B1^2)√(A2^2+B2^2)]

注:k1,k2分别L1,L2的斜率,即tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)


广告
点击进入详情页
本回答由提供
寂寞灬鱿鱼丝
2016-02-15 · TA获得超过500个赞
知道小有建树答主
回答量:368
采纳率:50%
帮助的人:59.5万
展开全部
  1. 平面向量夹角公式:cos=(ab的内积)/(|a||b|)

    (1)上部分:a与b的数量积坐标运算:设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2

    (2)下部分:是a与b的模的乘积:设a=(x1,y1),b=(x2,y2),则(|a||b|)=根号下(x1平方+y1平方)*根号下(x2平方+y2平方)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
箭浪你千夏11
2023-07-20
知道答主
回答量:42
采纳率:0%
帮助的人:5623
展开全部

平面向量夹角公式是通过向量的内积和模的乘积来计算的。

假设有两个平面向量a和b,它们的夹角记为θ。

首先,计算向量a和向量b的内积(又称点积):
a·b = |a| |b| cosθ

其中,a·b表示向量a和向量b的内积,|a|和|b|分别表示向量a和向量b的模,θ表示向量a和向量b的夹角。

然后,利用上述公式,可以得到夹角θ的计算公式:
θ = arccos((a·b) / (|a| |b|))

上下分别怎么算:

  • 上:计算向量a和向量b的内积,得到a·b;

  • 下:计算向量a的模和向量b的模的乘积,得到|a| |b|。

  • 最后,将上下的结果代入夹角公式中,即可得到夹角θ的值。

    需要注意的是,夹角公式只适用于二维平面向量,对于三维向量,夹角的计算稍有不同。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
庐阳高中夏育传
2015-01-20 · TA获得超过5558个赞
知道大有可为答主
回答量:5592
采纳率:50%
帮助的人:1582万
展开全部
如果是坐标形式;
a=(x1,y1)
b=(x2,y2)
a*b=x1x2+y1y2
|a|=√(x1^2+y1^2)
|b|=√(x2^2+y2^2)
cos<a,b>=[x1y1+x2y2] / [√(x1^2+y1^2)√(x2^2+y2^2)]
追问
空间向量的也是一样吗?
追答
一样的,就是多写一个竖坐标;
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
F__Horizon
2015-12-29 · TA获得超过1.4万个赞
知道小有建树答主
回答量:1929
采纳率:83%
帮助的人:169万
展开全部
如果是坐标形式;
a=(x1,y1)
b=(x2,y2)
a*b=x1x2+y1y2
|a|=√(x1^2+y1^2)
|b|=√(x2^2+y2^2)
cos=[x1y1+x2y2] / [√(x1^2+y1^2)√(x2^2+y2^2)]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式