如图,点P是?ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别

如图,点P是?ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1... 如图,点P是?ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S3=S2+S4;②如果S4>S2,则S3>S1;③若S3=2S1,则S4=2S2;④若S1-S2=S3-S4,则P点一定在对角线BD上.其中正确的有(  )A.①③B.②④C.②③D.①④ 展开
 我来答
就要你142
2014-11-19 · 超过70用户采纳过TA的回答
知道答主
回答量:128
采纳率:0%
帮助的人:169万
展开全部
∵四边形ABCD是矩形,
∴AB=CD,AD=BC,
设点P到AB、BC、CD、DA的距离分别为h1、h2、h3、h4
则S1=
1
2
ABh1,S2=
1
2
BCh2,S3=
1
2
CDh3,S4=
1
2
ADh4
1
2
ABh1+
1
2
CDh3=
1
2
AB?BC,
1
2
BCh2+
1
2
ADh4=
1
2
AB?CD,
∴S2+S4=S1+S3,故①正确;
根据S4>S2只能判断h4>h2,不能判断h3>h1,即不能得出S3>S1,∴②错误;
根据S3=2S1,能得出h3=2h1,不能推出h4=2h2,即不能推出S4=2S2,∴③错误;
∵S1-S2=S3-S4
∴S1+S4=22+S3=
1
2
S平行四边形ABCD
如图所示:

此时S1+S4=S2+S3=S△ABD=S△BDC=
1
2
S平行四边形ABCD
即P点一定在对角线BD上,∴④正确;
故选D.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式