设数列{an}中,a1=2,an+1=an+n+1,则通项an=______
设数列{an}中,a1=2,an+1=an+n+1,则通项an=______....
设数列{an}中,a1=2,an+1=an+n+1,则通项an=______.
展开
暴风Z5m
推荐于2016-08-12
·
TA获得超过113个赞
关注
∵a
n+1=a
n+n+1,
∴n≥2时,a
2-a
1=2,a
3-a
2=3,…,a
n-a
n-1=n,
以上各式相加,得a
n-a
1=
,
an=(n2+n+2),
又a
1=2适合上式,∴
an=(n2+n+2),
故答案为:
an=(n2+n+2).
收起
为你推荐: