已知函数f(x)=x2+a|lnx-1|,g(x)=x|x-a|+2-2ln2,a>0.(Ⅰ)当a=1时,求函数f(x)在区间[1,e]上

已知函数f(x)=x2+a|lnx-1|,g(x)=x|x-a|+2-2ln2,a>0.(Ⅰ)当a=1时,求函数f(x)在区间[1,e]上的最大值;(Ⅱ)若f(x)≥32... 已知函数f(x)=x2+a|lnx-1|,g(x)=x|x-a|+2-2ln2,a>0.(Ⅰ)当a=1时,求函数f(x)在区间[1,e]上的最大值;(Ⅱ)若f(x)≥32a,x∈[1,+∞)恒成立,求a的取值范围;(Ⅲ)对任意x1∈[1,+∞),总存在惟一的x2∈[2,+∞),使得f(x1)=g(x2)成立,求a的取值范围. 展开
 我来答
dbgq183
2014-09-21 · 超过57用户采纳过TA的回答
知道答主
回答量:109
采纳率:0%
帮助的人:136万
展开全部
(Ⅰ)当a=1,x∈[1,e]时f(x)=x2-lnx+1,f′(x)=2x?
1
x
≥f′(1)=1

所以f(x)在[1,e]递增,所以f(x)max=f(e)=e2(4分)
(Ⅱ)①当x≥e时,f(x)=x2+alnx-a,f'(x)=2x+
a
x
,a>0,∴f(x)>0恒成立,
∴f(x)在[e,+∞)上增函数,故当x=e时,ymin=f(e)=e2(5分)
②当1≤x<e时,f(x)=x2-alnx+a,f'(x)=2x-
a
x
=
2
x
(x+
a
2
)(x-
a
2
),
(i)当
a
2
≤1即0<a≤2时,f'(x)在x∈(1,e)时为正数,所以f(x)在区间[1,e)上为增函数,
故当x=1时,ymin=1+a,且此时f(1)<f(e)=e2(7分)
(ii)当1<
a
2
<e,即2<a<2e2时,f'(x)在x∈(1,
a
2
)时为负数,在间x∈(
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消