(2014?江都市二模)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,

(2014?江都市二模)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CAB=2∠CBF.(1)试判断直线BF与⊙... (2014?江都市二模)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CAB=2∠CBF.(1)试判断直线BF与⊙O的位置关系,并说明理由;(2)若AB=6,BF=8,求tan∠CBF. 展开
 我来答
我是___205
2015-01-30 · 超过69用户采纳过TA的回答
知道答主
回答量:128
采纳率:50%
帮助的人:70.2万
展开全部
解:(1)BF为⊙O的切线.
证明:连接AE.
∵AB为⊙O的直径,
∴∠AEB=90°(直径所对的圆周角是直角),
∴∠BAE+∠ABE=90°(直角三角形的两个锐角互余);
又∵AB=AC,AE⊥BC,
∴AE平分∠BAC,即∠BAE=∠CAE;
∵∠CAB=2∠CBF,
∴∠BAE=∠CBF,
∴∠BAE+∠ABE=∠ABE+∠CBF=90°,即AB⊥BF,
∵OB是半径,
∴BF为⊙O的切线;

(2)过点C作CG⊥BF于点G.
在Rt△ABF中,AB=6,BF=8,
∴AF=10(勾股定理);
又∵AC=AB=6
∴CF=4;
∵CG⊥BF,AB⊥BF,
∴CG∥AB,
FG
BF
=
FC
AF
=
4
10
=
2
5
,(平行线截线段成比例),
∴FG=
16
5

由勾股定理得:CG=
CF2?FG2
=
12
5

∴BG=BF-FG=8-
16
5
=
24
5

在Rt△BCG中,tan∠CBF=
CG
BG
=
1
2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式