Sn=1+1/2+1/3+1/4+.+1/n这个怎么求和的

 我来答
是你找到了我
高粉答主

2019-07-16 · 说的都是干货,快来关注
知道小有建树答主
回答量:916
采纳率:100%
帮助的人:42.1万
展开全部

lnn+R,R为欧拉常数,约为0.5772。

(1)当n有限时候:1+1/2+1/3+……+1/n=lnn,ln是自然对数

(2)当n趋于无穷时:1+1/2+1/3+……+1/n=lnn+R

欧拉常数最先由瑞士数学家莱昂哈德·欧拉在1735年发表的文章De Progressionibus harmonicus observationes 中定义。

扩展资料:

欧拉常数约为 0.57721566490153286060651209。欧拉曾经使用C作为它的符号,并计算出了它的前6位小数。1761年他又将该值计算到了16位小数。

1790年,意大利数学家马歇罗尼(Lorenzo Mascheroni)引入了基谈γ作为这个常数的符号,并将该常数计算到小数点后32位凯锋李。但后来的计算显示他在第20位的时候出现了错误。

无穷盯迟级数理论可知,调和级数

是发散的。但可以证明,

存在极限。

杨好巨蟹座
推荐于2018-03-18 · TA获得超过5万个赞
知道大有可为答主
回答量:6197
采纳率:80%
帮助的人:1282万
展开全部
求不了,这个是发散的。没有极限,就是说可以加到正无穷,没办法表示 最佳答案它是实数,所以它不是有理数就是无理数,而上两层的人说“谈不上到底是无理数还是有理数”的说法显然是错误的。而根据种种依据可判断它是无理数。 具体证明过程如下: 首先我们可以知道实数包括有理数和无理数。而有理数又包括有限小数和无限循环小数,有理数都可以划成两个有限互质整数相除孝答芦的形式(整数除外)。而1+1/2+1/3+1/4+1/5+...+1/n (n为无限大)通分以后的分子和分母都是无穷大,不是有限整数,且不能约分,所以它不属于有理数,因此它是无理数。 其实无穷个有理数相加未必就是有理数,而有可能等于无理数。我可以举个很简单的例子。 圆周率pi=3.1415926...是个无理数大家都知道吧,我可以把它分解成pi=3+0.1+0.04+0.001+0.0005+...的形式,等号右侧的每一项都是有理数,那么我们能说pi是有理数吗?当然不巧带能。所以无穷个有理数相加可能是无理数。 那么为什么我说1+1/2+1/3+1/4+1/5+...+1/n (n为无限大)是无理数而不是有理数呢?我再从一种角度给你证明。 1+1/2+1/3+1/4+1/5+...+1/n (n为无限大)是一个无穷小数你承认吧,不然我们讨论有理数还是无理数就没什么意义了。无限循环小数都有循环节,所以无限循环小数都可以根据等比数列知识划成两个互质整数相除的形式。 而1+1/2+1/3+1/4+1/5+...+1/n (n为无限大)不存在循环节,不可能根据等比数列知识划成两个互质整数相除的形式。所以它终究是无理数。 这是有名的调和级数,应该是高数中的东西,这题目用n!无济于事的 当n->∞,1+1/2+1/3+1/4+1/5+...+1/n->∞,是个发散级数 当n很大时,有个近似公式举扒:1+1/2+1/3+1/4+1/5+...+1/n=γ+ln(n) γ是欧拉常数,γ=0.57721566490153286060651209... ln(n)是n的自然对数(即以e为底的对数,e=2.71828...)
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
以自祎0gu038
2017-11-29
知道答主
回答量:3
采纳率:0%
帮助的人:3108
引用杨好巨蟹座的回答:
求不了,这个是发散的。没有极限,就是说可以加到正无穷,没办法表示 最佳答案它是实数,所以它不是有理数就是无理数,而上两层的人说“谈不上到底是无理数还是有理数”的说法显然是错误的。而根据种种依据可判断它是无理数。 具体证明过程如下: 首先我们可以知道实数包括有理数和无理数。而有理数又包括有限小数和无限循环小数,有理数都可以划成两个有限互质整数相除的形式(整数除外)。而1+1/2+1/3+1/4+1/5+...+1/n (n为无限大)通分以后的分子和分母都是无穷大,不是有限整数,且不能约分,所以它不属于有理数,因此它是无理数。 其实无穷个有理数相加未必就是有理数,而有可能等于无理数。我可以举个很简单的例子。 圆周率pi=3.1415926...是个无理数大家都知道吧,我可以把它分解成pi=3+0.1+0.04+0.001+0.0005+...的形式,等号右侧的每一项都是有理数,那么我们能说pi是有理数吗?当然不能。所以无穷个有理数相加可能是无理数。 那么为什么我说1+1/2+1/3+1/4+1/5+...+1/n (n为无限大)是无理数而不是有理数呢?我再从一种角度给你证明。 1+1/2+1/3+1/4+1/5+...+1/n (n为无限大)是一个无穷小数你承认吧,不然我们讨论有理数还是无理数就没什么意义了。无限循环小数都有循环节,所以无限循环小数都可以根据等比数列知识划成两个互质整数相除的形式。 而1+1/2+1/3+1/4+1/5+...+1/n (n为无限大)不存在循环节,不可能根据等比数列知识划成两个互质整数相除的形式。所以它终究是无理数。 这是有名的调和级数,应该是高数中的东西,这题目用n!无济于事的 当n->∞,1+1/2+1/3+1/4+1/5+...+1/n->∞,是个发散级数 当n很大时,有个近似公式:1+1/2+1/3+1/4+1/5+...+1/n=γ+ln(n) γ是欧拉常数,γ=0.57721566490153286060651209... ln(n)是n的自然对数(即以e为底的对数,e=2.71828...)
展开全部
人家又没说n趋近于正无穷 您凭什么说发散?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式