1个回答
展开全部
证明:
(1)
已知asin²(B/2)+bsin²(A/2)=c/2
∵cosB = 1-2 sin²(B/2)
∴sin²(B/2)=(1- cosB)/2
同理,
cosA = 1-2 sin²(A/2)
∴sin²(A/2 =(1- cosA)/2
∴asin²(B/2)+bsin²(A/2)= c/2
→a×(1- cosB)/2+b×(1- cosA)/2 = c/2
→a-a×cosB +b-b×cosA = c
a+b-c = a×cosB+ b×cosA
根据余弦定理,可得
cosB = (a2 + c2 - b2) / (2·a·c)
cosA = (c2 + b2 - a2) / (2bc)
代入到a+b-c = a×cosB+ b×cosA,得
a+b-c = a×[(a2 + c2 - b2) / (2·a·c)]+ b×[(c2 + b2 - a2) / (2bc)]
=( a2 + c2 - b2+c2 + b2 - a2)/2c
= 2 c2/2c
=c
a+b-c = c → a+b = 2c ∴ a,b,c成等差数列
(1)
已知asin²(B/2)+bsin²(A/2)=c/2
∵cosB = 1-2 sin²(B/2)
∴sin²(B/2)=(1- cosB)/2
同理,
cosA = 1-2 sin²(A/2)
∴sin²(A/2 =(1- cosA)/2
∴asin²(B/2)+bsin²(A/2)= c/2
→a×(1- cosB)/2+b×(1- cosA)/2 = c/2
→a-a×cosB +b-b×cosA = c
a+b-c = a×cosB+ b×cosA
根据余弦定理,可得
cosB = (a2 + c2 - b2) / (2·a·c)
cosA = (c2 + b2 - a2) / (2bc)
代入到a+b-c = a×cosB+ b×cosA,得
a+b-c = a×[(a2 + c2 - b2) / (2·a·c)]+ b×[(c2 + b2 - a2) / (2bc)]
=( a2 + c2 - b2+c2 + b2 - a2)/2c
= 2 c2/2c
=c
a+b-c = c → a+b = 2c ∴ a,b,c成等差数列
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询