试证明(1/n)^n+(2/n)^n+(3/n)^n+......+((n-1)/n)^n<1/(e-1)

弯曲的时钟
推荐于2017-10-02 · TA获得超过313个赞
知道小有建树答主
回答量:158
采纳率:0%
帮助的人:258万
展开全部
令An=(1/n)^n+(2/n)^n+(3/n)^n+......+((n-1)/n)^n 则
(n+1)^(n+1)a(n+1)=1^(n+1)+2^(n+1)+3^(n+1)+......+(n-1)^(n+1)+n^(n+1)
<n(1^n+2^n+3^n+......+(n-1)^n)+n^(n+1)=n^(n+1)(an+1) 所以
a(n+1)<n^(n+1)/(n+1)^(n+1)(an+1)=1/(1+1/n)^(n+1)(an+1)
注意到 (1+1/n)^(n+1)>e(因为递减趋于1) 所以
a(n+1)<1/e(an+1)=1/e+1/ean<1/e+1/e^2(a(n-1)+1)=1/e+1/e^2+1/e^2a(n-1)<
......<1/e+1/e^2+......1/e^(n-1)a2=1/e+1/e^2+......1/e^(n-1)*1/4
<1/e(1+1/e+1/e^2+......)=1/e*1/(1-1/e)=1/(e-1)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式