高数,微分方程求通解,求过程,谢谢😜

 我来答
sjh5551
高粉答主

2016-03-12 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8060万
展开全部
(1) 微分方程即 2y ' = 1 - cos2(x-y+1) = 1 - cos2(y-x-1),
令 u = 2(y-x-1), 则 2y = u + 2x + 2, 2y' = u' + 2,
微分方程化为 u' + 2 = 1 - cosu,
du/dx = -1 - cosu = -2[cos(u/2)]^2,
[sec(u/2)]^2d(u/2) = -dx,
tan(u/2) = - x + C, 即 tan(y - x -1) = -x + C
(2) 微分方程即 y‘ + sinxcosy + cosxsiny = sinxcosy - cosxsiny
得 dy/dx = -2cosxsiny
dy/siny = -2cosxdx
ln(cscy - coty) = -2sinx + lnC
cscy-coty = Ce^(-2sinx)
追问
看不懂
追答
(1)  先降幂,再换元, 再分离变量
(2) 先两边展开三角函数式,合并后分离变量
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式