熔沸点与什么有关
物理性质比如熔沸点一般与结构有关。单质和化合物熔沸点没有必然的联系。而结构里面主要就是看键参数,参数里面主要看键能和键长,因为熔沸点都是让它的状态改变了,所以必然与作用力有关。一般来说,键能越大,键越短,键越稳定,熔沸点越高。
扩展资料:
由于分子中原子的运动由量子力学决定,因此“运动”这个概念也必须要建立在量子力学基础之上。总体(外部)的量子力学运动——如平移和旋转几乎不改变分子的结构(由旋转导致的科里奥利力和离心扭曲以及由此导致的形状变化在此可以忽略)。
内部运动包括振动,隶属于谐波,即原子即使在绝对零度仍会在平衡间振荡。此时所有原子都处于振动基态,具有零点能量,振动模式的波函数也不是一个尖峰,而是有限宽度的指数。
随着温度升高,振动模式(自由度)被热激发,用通俗的话讲是分子振动加快,而它们仍然只在分子特定部分振荡。
波尔兹曼分布可以量度温度对分子振动的影响:exp(-ΔE/kT),其中ΔE是振动模式的激发能,k是波尔兹曼常数,T是绝对温度。在298K(25 °C)下,典型的波尔兹曼因子值为:ΔE= 500 cm-1 --> 0.089;ΔE = 1000 cm-1 --> 0.008;ΔE = 1500 cm-1 --> 7 * 10-4。
从经典力学角度来看即是,更多分子在高温下转动更快(它们具有更大的角速度和角动量);而从量子力学角度看则是,随温度升高,更多角动量较大的本征态开始聚集。典型的转动激发能数量级在几cm-1。
由于涉及转动态,很多光谱学的实验数据都被扩大了。而转动运动随温度升高而变得激烈,因此,低温下的分子结构数据往往更加可靠,而从高温下的光谱很难得出分子结构。
参考资料:百度百科---分子结构
2、原子晶体:原子晶体原子间键长越短、键能越大,共价键越稳定,物质熔沸点越高,反之越低。如:
金刚石(C—C)>碳化硅(Si—C)>晶体硅 (Si—Si)。
3、离子晶体:离子晶体中阴、阳离子半径越小,电荷数越高,则离子键越强,熔沸点越高,反之越低。
如KF>KCl>KBr>KI,CaO>KCl。
4、金属晶体:金属晶体中金属原子的价电子数越多,原子半径越小,金属阳离子与自由电子静电作用越
强,金属键越强,熔沸点越高,反之越低。如:Na<Mg<Al。
合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。
5、分子晶体:分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点
反常地高)如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3OCH3。
(1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。
如:CH4<SiH4<GeH4<SnH4。
(2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高,如熔沸点
CO>N2,CH3OH>CH3CH3。
(3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如:
C17H35COOH>C17H33COOH;
(4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4,C2H5Cl>CH3Cl,CH3COOH>HCOOH。
(5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如:CH3(CH2)3 CH3 (正)>CH3CH2CH(CH3)2(异)>(CH3)4 C(新)。芳香烃的异构体有两个取代基时,熔点按对、邻、 间位降低。(沸点按邻、间、对位降低
而结构里面主要就是看键参数,参数里面主要看键能和键长,因为熔沸点都是让它的状态改变了,所以必然与作用力有关。
一般来说,键能越大,键越短,键越稳定,熔沸点越高。
如果你学了元素周期表的话,应当知道金属和非金属,金属性越强(处于表左下)和非金属性越强(表右上)形成的键越稳定,键能越高;成键越多(指单键、双键、叄键),键能越大,键越稳定(不是相对的,因为双键里有一个键不如单键稳定,叄键也如此)。键长主要看成键原子间作用力,简单说就是核间距,和键能是差不多的。
希望我的回答帮助到了你,欢迎追问~不懂得就问,我帮你你解答~
还与物体有关,比如铁与铜的熔点也不一样。